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Superconductivity

This part of the course provides a basic account of the phenomena and theory of 

supercconductivity in  metals, and discusses applications such as SQUIDS, levitation and 

high-temperature superconducting materials. It will be of interest the experimental and 

theoretical physicists, and to materials scientists. Requirements are elementary 

electromagnetism, quantum mechanics statistical and solid state physics.

Recommended books; General solid state texts

• J. R. Christman: Fundamentals of Solid State Physics, Wiley 1988: 

Clearly-written and succinct

• C. J. Kittel Introduction to Solid State Physics, Wiley 7th edition 1994
The classic text with useful appendices. Units are a confusing mixture of cgs and SI

• N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Reinhart and Winston 1976: An 

excellent advanced text. cgs units
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• N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Reinhart and Winston 1976: An excellent 

advanced text. cgs units

Elementary Texts.

• M. Cyrot and D. Pavuna Introduction to Superconductivity and High-Tc Materials, World Scientific 

1992 A modern introduction.

• A. C. Ross Innes and E. H. Rhoderick Introduction to Superconductivity and High-Tc Materials,

World Scientific 1992 An excellent introduction to the physics of superconductivity 

• J. F. Annett. Superconductivity, Superfluids and Condensates, Oxford 2004 Ch 3 - 6. A more advanced 

treatment of all the main macroscopic quantum phenomena

Advanced Texts.

• M. Tinkham, Introduction to Superconductivity, Dover . 2004.

• P. G. de Gennes, Superconductivity of Metals and Alloys Benjanin 1966



PYU44P13  2023  5



PYU44P13  2023  6

I. Simple Models of Metals (review)
1 Introduction
Three quarters of the elements in the periodic table are metals.
Metals transport electrons freely under the influence of an electric field 
Normal metals are opaque and highly reflecting at all wavelengths

Metals

Metalloids

Nonmetals
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Most metals enter a ground state at low temperature ( ≤ 1K ) which is magnetically-
ordered or superconducting, but never both. 18 elements order magnetically, 32
are superconducting (more at high pressure or in thin film form), some are
neither (Na, K, Ne, Ar….), none are both at once.

Superconducting and magnetic  elements
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1.1 Electrons

The properties of metals reflect the electrostatic, Coulomb interactions among the electrons, 
and between the electrons and the nuclei.  Metal physics is the physics of the Coulomb inter-
actions of the outer electrons, subject to the constraints of quantum mechanics – but there 
are ~1020 atoms per cubic millimeter! As usual in physics we develop simplified models to 
treat the essential physics, and reproduce the rich variety of physical phenomena.

An electron is a point particle which possesses:  
mass m =  9.109 10-31 kg
charge -e = -1.602  10-19 C

angular momentum (spin) ½ =  0.527 10-34 J s

In metals, we are concerned with the outermost, weakly-bound conduction electrons of the 
atoms which have a binding energy of just about an electron volt. 

e.g. 29Cu   1s22s22p63s23p63d10 4s1 Atomic density
n = 8 1028 m-3

fcc, a0= 0.36 nm

atomic spacing 0.25 nm

Spin

Core electrons            Conduction electron

Binding energy ~9 keV Binding energy  ~1 eV
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Why is the last electron delocalized.?

— Confining an electron to an atom introduces an uncertainty in its momentum given by the 
Heisenberg relation 

p x ~  

Take   x ~ 0.25 10-9 m,  =  1.054 10-34 J s

p ~ 4.2 10-25 J s m-1

(p)2/2m ~ 18 10-50/2 x 9 10-31 ~ 1.0 10-19 J  ≈ 1 eV (1 eV = 1.602 10-19 J)

— but
binding energy of a Bohr atom Eb = Z2R0/n2         R0 is the Rydberg constant, 13.6 eV

Zeff = 1
n = 4

Eb ≈ 1 eV
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2 Independent  Electron Models

2.1 Drude Model (1900)

Drude considered the conduction electrons as a classical gas, which were involved in 
occasional collisions with the ion cores.

In an electric field, the electrons acquire a drift velocity vd in the direction of E.

j  = - n e vd (1)

In a typical conductor, 1 A may flow in a 1mm2 conductor,  j = 106 A m-2.
vd = j/ne = 106/ 8 1028 x 1.6 10-19 ~ 10-4 m s-1.

Note vd << v,  the mean velocity of the electrons; 
v ~ 105 m s-1 for classical electrons, E = (3/2)kT = ½mv2

v ~ 106 m s-1 for Fermi-Dirac statistics (EF ~ 10 eV) [kT ≈ 1/40 eV]

Current density A m-2

Conduction electron density
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2.1.1  Ohm’s law (1827)
Ohm’s law is an experimental result for normal metals, originally written as V = IR,  here

j  =   E (2)

For copper, a good metal  ≈  108 -1 m-1

Resistivity  is defined as 1/ .  

For metals, generally         = 10-8 - 10-6  m

l A

Resistance R of a bar of length l and cross-section A  is R = l/A  ()

Note that  and  are extensive properties of the metal.

How far () do the electrons travel between collisions? How long () between collisions?
Equating impulse (F = -eE) to change of momentum (mvd), we find  vd ≈ -eE/m;    

Hence from (1) and (2)    = ne2/m 
For Cu,  = [108x9.1 10-31]/[8 1028x(1.60 10-19)2] = 10-13 s

Define the mean free path as  = v (Note not = vd) For Cu  ≈ 100 nm.  

conductivity -1 m-1
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2.1.2  Hall effect

In a magnetic field B, there is an off-diagonal term in the resistivity (or conductivity)

E  =  RH B x j
j e(E + vd x B) = 0

vd = RH j
E     B j = - ne vd

RH = -1/ne

For copper, RH is very small; measurements of RH  give n (provided there is only one band)

x

z

y
Ey =  Rxz Bz jx
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2.2 Free Electron Model

We must now apply quantum mechanics to the electrons. They have spin ½, and thus there 
are two magnetic states, ms = -½ (spin up ) and ms = + ½  (spin down ), for every electron.

Suppose the electrons are confined in a box of volume V, where the potential is constant, U0

Electrons are represented by a wavefunction (r) where *(r)(r) dV is the probability of 
finding an electron in a volume dV. 

Schrödinger’s equation  H(r) = E (r) 

{p2/2m + U0}(r) = E (r) but p → -i

{-22/2m + U0}(r) = E (r) 

Solutions are              k(r) = (1/V1/2) exp ik.r (3) 

Normalization     wave vector           

The wave vector of the electron k = 2/ Its momentum;  *(r)(-i)(r)dV =  k

*(r)(r)dV, is k.
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Only certain values of k are allowed. The boundary
condition is that L is an integral number of wavelengths.

ki = 0,±2/L,±4/L,±6/L ……..

The allowed states are represented by points in k-space

There is just one state in each volume (2/L)3 of k-space,
And at most two electrons, one spin up  and one spin
down , can occupy each state. Electrons are fermions.

The energy of an electron in the box is E = p2/2m

Ek = (k)2/2m + U0 (4)

L

E - U0

k

Free -electron 
parabola
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The points in k-space are very closely spaced; There are N
~ 1022 electrons in a macroscopic sample, so k is
effectively a continuous variable.

At temperature T = 0, we fill up all the lowest energy
states, with two electrons per state, up to the Fermi level.
The energy of the last electron is the Fermi energy EF.
The wavelength of the last electron is the Fermi
wavelength kF.
The N occupied states are contained within the Fermi
surface. In the free-electron model this surface is a sphere.

l

l

l

l

l

l

l

l

l

We calculate EF. N = (4/3)kF
3x2/(2/L)3 → kF = (32N/V)1/3 (5)

(EF - U0) = (kF)
2/2m = (2/2m) (32n)2/3 where n = N/V      (6)  

For Cu,    (EF - U0) ≈ 7 eV.    

An equivalent temperature  TF is defined by kTF = EF.  For Cu, TF ≈ 80,000 K (1 eV =11605 K)

The Fermi velocity vF = kF/m  For Cu, vF ≈ 1.6 106 m s-1  (about 10 x the classical value)

kx

ky



PYU44P13  2023  16

A useful concept is the density of states, the number of
states per unit sample volume, as a function of k or E.

From (5) k = (3π2n)1/3

From (6) E = 2k2/2m = 2/2m (3π2n)2/3

n = (1/3π2)(2mE/2)3/2

ln n = ln E + const

1/n dn = (3/2E) dE

The number of electrons (both spins)between E and E + 
E is

dn/dE = D(E) = 3n/2E ∝ E1/2

E

At the Fermi level * D(EF) = (3/2)n/EF        Units of D(EF) are states J-1 m-3 ( or states eV-1 m-3)

State occupancy when T > 0 is given by the Fermi function

f(E) = 1/[exp(E - )/kBT + 1] (7)

The chemical potential  is fixed by 0
 f(E)dE = 1

Note:  = EF at T = 0;  also j = (/e) *

D(E)

E

f(E)

kBT
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-

kB = 1.38 10-23 J K-1

I eV ≈ 11605 K      
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1.3 The Nearly-free Electron Model.

Now we consider the effect of replacing U0 by a periodic potential U which has the
periodicity of the lattice. The electron waves will be diffracted by the lattice.

— Then (3) becomes
k(r) = (1/V1/2) [exp ik.r] Uk(r) (8)

where Uk(r) has the periodicity of the lattice.
The effect of a translation by any lattice vector Ri is to multiply the wave function
by a phase factor exp ik. Ri This is Bloch’s theorem
Note: The wavevector k is still a good label for the electron states.

— The free-electron parabola develops bands
of allowed and forbidden energy for
the electrons. The gaps occur at values
of k corresponding to the edges of the
Brillouin zone, where the electrons are Bragg scattered
The Brillouin zone is the Wigner-Seitz cell of
the reciprocal lattice of the crystal.

E

k

Energy bands

gap
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— The density of states develops band gaps and van Hove singularities.

— Each band contains just two electrons, one  and one .

— For monovalent metals like Cu, Na …. the first band is just half full. The free electron
model is a pretty good approximation.

E

D(E)

Band gap
EF

Fermi surface of copper; 4s1
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6.4. Density of States Effects
Some physical properties that depend solely on electrons can be completely explained in 
terms of the total (both spins) density of states at the Fermi level D(EF)   

4.1 Electronic specific heat
Only electrons within ~ kBT of the Fermi level can be thermally excited at a temperature T.
The number of these electrons is ~D(EF) kBT
The increase in energy E(T) - E(0) is ~ D(EF) (kBT)2

Cel = dE/dT ≈ 2D(EF) kB
2T

The exact result is      Cel = (2/3)D(EF) kB
2T  = T

When T << D (the Debye temperature) 
C = T  + T3

Note that the electronic entropy Sel = 0
T (Cel/T) dT = T  [recall C = Q/T ; Q = TS]

According to the third law of thermodynamics, S→ 0 as T→ 0 

.

Electronic contribution Lattice contribution
EF E

D(E)

kBT
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4.2 Pauli susceptibility
Only electrons within ~ µ0µBH of the Fermi level can be magnetically excited in a field H
The total number of these electrons is D(EF) µ0µBH.   We now show the  and  density of 
states separately, in red and blue  They split in a field B = 0H

D,(E)

EE



 EE





H

±µ0µBH

EF

The splitting is really very small, ~ 10-5 of the bandwidth in a field of 1 T.

M = B(n - n) 
Note M is magnetic moment per unit volume, n , n are numbers per unit volume
At T = 0, the change in population in each band is n = ½D(EF)0BH       

M = 2B n  = D(EF)0B
2H     The dimensionless susceptibility  = M/H

Pauli = D(EF)0B
2 It is ~ 10-5 - 10-6 and independent of T
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In the free-electron model, D(EF) = (3/2)n/EF 

Hence   Pauli = {3n0B
2/2EF }[1 + cT2 + ….] (Compare Curie law n0B

2/kBT)

The ratio of electronic specific heat coefficient to Pauli susceptibility in the nearly-free, 
independent electron approximation should be a constant R.

R = 2kB
2/30B

2

Actually, there is also small, diamagnetic contributions to the susceptibility due to the core 
electrons and the conduction electrons (Landau diamagnetism), arising from Lenz’s law.  
(In Cu, these diamagnetic contributions actually outweigh the Pauli paramagnetism!)

Landau  = -⅓Pauli

Some values of Rexperiment/Rtheory Theory is OK for broad s-band, but poor for d-band metals

Li 2.0 Pd 4
Na 0.9 Ni 3
Rb 1.1
Cs 0.9
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7.5 Resistivity of Metals

5.1 Mattheissen’s rule

At room temperature the resistivity (RT) of 
good metals is ~ 10-8  m. It has a positive 

temperature coefficient, but it levels off to a 
constant, temperature-independent value 0

at the lowest temperature.

T



0

~T

~T5

A perfect crystal lattice would not scatter electrons at all – electron states are Bloch 
waves.  Very pure metals have (RT)/ 0 ~ 104. 

 = 0 + (T)

In noncrystalline metals (metallic glasses) the first term is so large that the lattice 
vibrations contribute very little.  There 0 ≈ 10-6  m. 

Scattering by lattice vibrations (phonons)Scattering by impurities or defects

demo
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5.2 Temperature-dependence of resistance

The Fermi surface is very slightly displaced by an applied 
electric field. 

The current decreases in the absence of field by relaxation 
processes that change the electron momentum by ~kF.

The direction of the momentum of the scattered electron 
changes but its magnitude remains ~kF for the effective 

scattering processes

kx

ky

kx

ky

k1



k2

k

q

Inelastic scattering process

Energy is also conserved, but since EF >> kBT, the scattering is quasi-elastic.
Note;  A phonon of energy kBD has q ~ kF.   Here D is the Debye temperature. Consider 
two limits:

q is the phonon wave vector

Conservation of momentum
k2 = k1 + q

E
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a) T >> D

The electron mean free path  will be inversely proportional to the number n of phonons 
present in the metal,

The internal energy U of a monatomic solid is ~ 3RT. 
The energy per phonon is ~ kBD  n T         Hence   1/n  1/T  = v

So  = 1/ = me/(ne2)  T.    ( = ne2/me) see p. 10

b) T <<  D 

At low temperatures the specific heat C ~ T3 in the Debye model, hence U ~ T4.
The energy per phonon is kBT when T <<  D        n T3 Hence l  1/n  1/T3

But these low-energy phonons do not possess enough momentum to scatter electrons 
through a large angle on the Fermi surface.

q <<  kF, hence the scattering angle  is small. 
k = kF(1 - cos) ≈ kF

2/2  q2/2 for small . the number of collisions required to 
deflect the electron through  ~  varies as (D/T)2      [for a phonon E ~ q near the 
origin].  leff ~ (D/T)2l ~ 1/T5 hence    T5. Note: In transition metals, umklapp
processes can occur with k1 + q + G = k2 where G is a lattice vector,  then    T3. 
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5.3 Electron-phonon scattering. See Ashcroft and Mermin

Consider the atoms vibrating about their equilibrium positions Ri. 

ri = Ri +  cos (q.Ri - t)

Instantaneous position Amplitude and polarization-dependence of lattice vibrations

An electron has incident energy , and momentum k1 and it is scattered (with or without 
change of energy) to a state with momentum k2

Set K = (k2 - k1), the change in wavevector.

The total scattering amplitude is proportional to 

A = i exp{i(K.ri - t)}

= i{1 + i K. cos (q.Ri - t) + …..} exp{i(K.Ri - t)}

provided the atomic displacements are small.

A = Iexp{i(K.Ri -t)}+(1/2)iK. {Iexpi[(K+q).Ri -(+)t])}+Iexpi[(K-q).Ri -(-)t])…

k1

k2

K
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The next term is of order 2

—The first term gives the Bragg scattering, which has a maximum at K = G, any reciprocal 
lattice vector. It is elastic scattering at frequency .

k1 → k2± G

—The second terms correspond to inelastic scattering 

→±  and k1 → k2± G ± q

The electron is scattered from one Bloch state to another, with the absorption/excitation 
of a phonon of wave vector q.

The frequency of the scattered wave is ’ = ± 
Multiplying by ;  (k1) = (k2) ± (q)

— Higher order terms represent weaker, multiphonon processes

Similar theory applies to other scattering, e.g. neutron scattering in crystals, where the 
dispersion relation (q) can be traced out for the phonons.  [What does it look like?]
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Superconducting and magnetic  elements

2. Superconductors
1 Introduction

Half the metallic elements have a superconducting ground state, and many hundreds of 
superconducting metals and alloys exist  New ones are being discovered every year;        
e.g. MgB2, FeSe, LaH10 (under high pressure) ….
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The phenomenon was discovered in 1911 by Kammerlingh Onnes, who had recently 
liquified helium for the first time in Leiden in 1908. Motivated by a desire to investigate van 
der Waals’s theory of the noble gasses, he became interested in the behaviour of metals at 
low temperature

Einstein  Ehrenfest  Langevin  Onnes  Weiss

‘Door meten tot weten’
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Ehrenfest,  Lorentz,  Bohr,  Onnes The 
Great



PYU44P13  2023  32

& the Good

Boiling points (K)

Xe 161
Kr 121
Ar 87
Ne 27
H 20
He 4.2
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T



0

Tsc

There was the question of whether the resistivity of a very pure metal would tend to zero  as 
T → 0. He chose mercury, which could be purified by multiple distillation, to minimize the 
residual resistivity, caused by impurity scattering.

superconducting

He found that the resistivity fell abruptly to zero, as far 
as he could measure, at a critical temperature Tsc = 4.2. 
K
This was the first observation of the superconducting 
transition. The transition was reversible on heating Kwik nagenoeg nul

8-iv-1911; 16.00
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The maximum Tsc advanced slowly but steadily as more and more superconducting alloys and 
compounds were discovered. Up to 1987, the record of 22.3 K was held by Nb3Ge. There had 
been no advance in Tsc for 15 years, although progress was made in other ways.
The discovery of high-Tsc oxide superconductors by Bednorz and Müller was a breakthrough

Tsc for H2S is 203 K 
under 150 GPa
Nature 525 73 (2015)

Tsc for LaH10 is >260  
K under 200 GPa
Phys Rev Letters 122
027001 (2019)



PYU44P13  2023  35



PYU44P13  2023  36

From the beginning, the implications of zero resistance were quickly grasped —
superconducting solenoids to generate magnetic fields, superconducting power transmission 
lines, superconducting motors and generators ….

However, all the early superconductors, pure metals and alloys (known as type I 
superconductors) had a severe defect — the superconducting state was was easily destroyed 
by an applied magnetic field, or electric current flowing in the supererconductor.  

Type II superconductors, which had a high extrapolated residual resistivity, were discovered 
later.

Tsc (K)

Pb

µ0Hc

superconducting

normal

Tsc(K) 0Hc(T)

Zn 0.9 0.005

Sn 3.7 0.03

Pb 7.2 0.08

Nb 9.5 0.20

Note: Stability of the 
superconducting state 
increases as Tsc increases 

Bc(T)= Bc(0){1- (T/Tsc)
2}

50



PYU44P13  2023  37

The critical current is also related to the critical field.

Silsbee’s Rule:  The current cannot exceed that which produces Hc at the surface of the 
conductor. (The critical current may be much less).

a

i

Consider the dashed path around the 
circumference of the wire.

 Hdl = i enclosed current

2aH = i

ic = 2aHc

jc = 2Hc/a

This suggests that for a large critical current density we should use 
separated strands of very fine wire.  We discuss where the current 
actually flows in a superconductor in a later section, Ch 3. 2.2

Impurities and inhomogeneity tend to smear out the superconducting 
transition.  



7.2 Zero resistance

Is the resistance really zero ?    Or is it just very small?
A good test is to set up a supercurrent in a loop (see below) and check if there                     is 
any change in the magnetic field it produces.

If the resistance of the loop is R, and if its inductance is L

iR + Ldi/dt = 0

i(t) = i(0) exp -(R/L)t

From sensitive experiments using nmr probes to measure H, over periods of one year,  it has 
been found that  (L /R) ≥ 105 years and  < 10 -26  m

Compare with copper,  ≈ 10-8  m . 

The resistance of the superconductor really is zero.
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i

L
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An important property of a resistanceless circuit is that the flux threading a resistanceless 
circuit cannot change

Ba Area A
Apply a field Ba to the ring in its 
normal state, and then cool the ring 
below its superconducting transition 
Tsc in the field. The flux threading the 
loop is  = BaA (units Tm2 or Weber)

Now try to change the flux in the ring by changing Ba.

An emf is induced according to Faraday’s law. E = -A dBa/dt, and a current i is created.

- A dBa/dt  = R i + Ldi/dt    but R = 0,

Therefore    L i + ABa = constant = 

The total flux threading the circuit is a constant. It cannot change. The original flux is 
maintained indefinitely, provided the ring remains resistanceless, and i < ic

Uses: — Magnetic screening

— Superconducting magnets in the persistent mode.
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— Magnetic screening

T < Tsc T < Tsc

Cool in zero field. No subsequently applied 
field Ba < 0Hc can penetrate. 

Very good screening of 
external magnetic fields 
can be achieved with 
superconducting shields. 
But note  = 0           i.e.   

sBaS = 0 

B = 0 everywhere inside.

— Superconducting magnets (persistent mode)

The current in the sc solenoid creates a field B0

≈ 0ni. It is built up slowly to the desired level, 
and the superconducting switch is closed 
(heating it above Tsc with a little coil opens it).

The power supply can then be removed, and the current 
flows through the s/c switch, since  = constant

B=0 B=0

Superconducting cylinder

B

Liquid He Switch
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2.1 Superconductors in parallel paths

a b
c

d

i1

i2

i

What determines the distribution of the current i in the two paths ?

Vab = L1 di1/dt + M di2/dt = L2 di2/dt + M di1/dt

(L1 - M)di1/dt = (L2 - M)di2/dt

Integrating      (L1 - M)i1 = (L2 - M)i2 + constant

If i1 = i2 = 0 at t = 0, constant = 0

Furthermore, if L >> M,             i1/i2 = L2/L1     Current splits inversely proportionally to L

2.1 AC currents in superconductors

Power transmission in a superconductor is truly lossless only for DC. There is no electric field, 
otherwise the current would change. If there is a changing current, as in AC, some electric field 
must be present. The superconducting electrons possess mass, so they lag behind the exciting 
field.   This inertia corresponds to a small inductance, adding to that due to geometry
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The two-fluid model assumes that both normal and superconducting electrons are present 
below Tsc, with the  proportion of the latter falling to zero as T → Tsc.

Hence is equivalent to 

For DC the normal electrons are completely short-circuited. Typically, L /R ~ 10-12  s, so even in 
the kHz or MHz range, the fraction of the current carried by the normal electrons is small.

However, at frequencies ≥ 1011 Hz, the superconducting properties disappear.  This is in the 
far infrared (terahertz range).  = c/ = 3 mm.

In the visible range,  = 500 nm, a normal metal and a superconductor are indistinguishable.    
A superconductor looks no different in the superconducting state.

We will see that this crossover from superconducting to normal behaviour occurs at 
frequencies

h =   is the superconducting gap
where      ~ kTsc [6.6 10-34 x 1011  1.38 10-23 ≈ 5 K]

normal

superconductor

sc

demo
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7.3 Diamagnetism (Difference between a metal with no resistance and  a superconductor)

The magnetic properties of superconductors are as extraordinary,  and actually more 

important and characteristic than the zero resistance. 
They show that a superconductor is something much more than a perfect conductor. A 

superconductor is not just a metal with zero resistance.

We saw in §7.2 that  = constant for a resistanceless circuit.  This is true for any such circuit, 
hence at every point in a superconductor

dB/dt = 0  x E = -dB/dt  (Maxwell 4)

A x E dA =  E .dl = 0
No emf E around a sc circuit

(There couldn’t be; otherwise j would increase without limit)

The flux distribution in a perfect conductor would remain fixed, just  as it was when the metal 
first became resistanceless.

∇ . B = 0

εo∇ . E = ρ

(1/μo)∇ x B = j + εo∂E/∂t

∇ x E = -∂B/∂t



PYU44P13  2023  44

T > Tsc

T < Tsc

Perfect conductor.

Note that the state of the sample 
depends not just on the 
thermodynamic variables B0 and T, 
but on the history of how it was 
cooled below Tsc (whether or not a 
field was applied). 

The transition for a perfect 
conductor would be irreversible, and 
thermodynamics would not apply!

Note: The applied field Ba is the field 
(flux density) = 0Ha that would be  
there in the absence of a specimen. 
The currents flowing in the 
superconductor modify B in its 
vicinity.

A perfect conductor cooled below Tsc with or without an 
applied field, which is then reduced to zero.
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T < Tsc

T > Tsc

Superconductor.

The behaviour of a superconductor is 
different. Meissner and Oschenfeld
in 1933 measured the flux 
distribution outside Sn and Pb
specimens and found that on cooling 
below Tsc the samples become 
perfectly diamagnetic, expelling the 
magnetic flux density from their 
interior,  This is the Meissner effect.

B = 0   (for a type I s/c)

Note: The transition at Tsc is now 
reversible. The state of the system is 
now determined only by the 
thermodynamic variables B and T.  

A superconductor cooled below Tsc with or without an 
applied field, which is then reduced to zero.
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Superconducting levitation, 

A magnet suspended above a superconductor demonstrates perfect conductivity.

A magnet which rises spontaneously when the superconductor is cooled below Tsc

demonstrates flux exclusion, the Meissner effect. 

Because of the Meissner effect, the superconductor acts
like a magnetic mirror.        B = 0 inside

.B = 0 (Maxwell 1) means B⊥ = 0
hence B is parallel to the surface outside the s/c

demo

∇ . B = 0

εo∇ . E = ρ

(1/μo)∇ x B = j + εo∂E/∂t

∇ x E = -∂B/∂t

Image magnet

superconductor
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Flux exclusion 

There are two alternative ways to consider the flux exclusion from a type I superconductor

— Screening current diamagnetism.

The superconductor generates a distribution of electric currents which cancel the applied 
field everywhere in the interior. Consider 
a rod-shaped specimen:

Ba js l js Am-1  is the surface screening current From 
Ampère’s law Bal = 0 jsl

Ha = Ba/0 = js Am-1

— Bulk diamagnetism

We can suppose that perfect diamagnetism is a bulk magnetic property of the 
superconductor.   M = - js x en (right hand rule)

js but B = 0(H + M)
hence B = 0 → H = - M (units Am-1) The

relative susceptibility  = -1 ‘perfect diamagnetism’ The
two descriptions are formally equivalent; either one will do.

M
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In the screening current picture, the currents flow only on the surface of the superconductor, 
not in the bulk.

 x B = 0 j (Maxwell 3 )

Since B = 0 inside the superconductor,  x B = 0  → j = 0

B ≠ 0 outside, so the current must flow on the surface.

Note: There is an analogy with the charge distribution on a conductor (E = 0 inside a metal),   
and the current distribution in a superconductor;   equipotentials ~ flux lines.

Consider a hollow conductor; Flux exclusion depends on whether Ba is applied above or below 
Tsc

i1 i1

i2

a) Cool, apply B  b) Apply B, cool
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3.1 B, H and M
In free space, the distinction between B and H is unimportant, they are simply proportional, 
related by the constant 0 the permeability of free space 4 10-7 T A-1m. 

B = 0 H

B, the magnetic flux density is taken as the fundamental quantity, because there are no 
magnetic poles in nature, hence .B = 0.  The B-field is created by electric currents and may 
be calculated from the Biot & Savart law:                 B = -0 I r x l /4r3

(follows from M3)

In free space,  Ampères law follows   B.dl = 0I,  where I is the enclosed current.

but in a magnetic material, both conduction currents and magnetization currents contribute 
to B

enclosed current

If a solenoid contains a bar of magnetic material with 
magnetization (magnetic moment m-3) M, the flux 
density in the bar is the sum of that produced by the 
solenoid, and that produced by the atomic (or 
superconducting) currents in the material.  When the

bar is magnetized along its length, the contribution of the magnetization to B is equivalent to 
that of a surface current density of M Am-1. 

M
B

P
r

l

B

ni = If

i
End view

of bar
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B = 0ni + 0M (there are n turns m-1 on the solenoid)

Hence, integrating around the dashed loop,  B.dl = 0(If + IM) If = ni

Free (conduction) current threading the loop        magnetization current threading the loop (Same as jsl)

Since we have no means of measuring IM directly, we define another field as H = B/0 - M
H is known as the magnetic field strength. 

B = 0 (H + M)
So Ampère’s law for H involves only the measurable,  free conduction currents If. 

 H.dl = 0If

This is the usual form of Ampères law, which applies in any medium.
Note: For the long bar, H does not depend on the presence of magnetic (or superconducting) 
material. The screening currents IM influence B, but not H inside the material. Deep inside a 
type I superconductor, B = 0 (Meissner effect) but H ≠ 0 in the presence of an applied field. 

1. Summary, in point form:  x B = 0 ( jf + jM)
 x H = jf  x M = jM

Note: The B-field is solenoidal, produced by currents only, whereas the H-field behaves as is it 
were produced by a distribution of fictitious magnetic ‘poles’ on the sample surface.

enclosed free current

due to solenoid                 due to magnet
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What if the sample is not a thin rod?    Consider a sphere:

M
B

In the uniform applied field of the solenoid, M is still uniform (as it is for any ellipsoid of 
revolution) but the contribution to B is smaller than before. 

B = 0ni + (2/3)0M

To retain Ampère’s law we keep  H = B/0 - M as the definition of H within the sphere
Hence    H = ni - (1/3)M Hint = Ha + Hdemag where Ha - ni

The H-field is reduced by end effects, the demagnetizing field Hdemag. The factor 1/3 is the 
demagnetizing factor for the sphere. 

In general Hint = Ha - NM for any ellipsoid;

where Nx + Ny + Nz = 1;  It depends on 
shape.   In   In 

summary   Bint = 0(Hint + M)

and Hint = (Ha - NM)

applied field   + demag field   

M BH

N

S

Magnet when Ha = 0
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∇ . B = 0

∇ . D = ρ

∇ x H = j + ∂D/∂t

∇ x E = -∂B/∂t

N.B. M  and  P are implicit

B = µ0 (H + M )

Maxwell’s equations in a medium

Ferromagne
t

Superconducto
r

B
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M
B

Hence Bint = 0(Ha + (1 - N )M)

Now consider a superconductor.  Here Bint = 0, and M is opposite in direction to Ha

Ha = M(N -1)

Hint = -M = Ha/(1- N )

So the internal H-field in a superconductor is actually greater than the applied field, 
whereas in a ferromagnet the internal H-field is reduced by the demagnetizing field.

The key point is that it is the H-field that actually determines the state of the material.

The critical field is Hc not Bc Moreover, it is the local (internal) value of H that counts.

Recall: The boundary conditions for B and H at an interface

B⊥ is continuous   (follows from Gauss’s theorem)

H|| is continuous   (follows from Ampère’s law)

Ha
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3.2 The intermediate state

When the specimen is not a long thin rod, the internal field  Hint =  Ha /(1- N)         e.g., 
for a sphere, N = 1/3;   Hint =  (3/2) Ha or for a cylinder N = 1/2;   Hint = 2Ha

x

y

Outside the sphere the field lines are bunched  
at ‘x’ because of flux exclusion from the 
superconductor. Hence H = B/0 > Ha

At the surface at ‘x’, the tangential component 
of H is continuous, so Hx =  (3/2) Ha

So what happens when Hx = Hc ?    

Caps at x and y (caps) go normal when Ha = (2/3)Hc , not the whole sphere. Sc shape changes

When (2/3)Hc < Ha < Hc the sphere breaks up into normal and superconducting domains

The magnetic flux now runs through the normal 
domains, while remaining excluded from the 
superconducting domains. These now have a 
different shape, and a smaller value of N.
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At the superconductor/normal interfaces,  the normal component B⊥ is continuous. Since B = 
0 in the superconducting domains, it follows that B and H lie parallel to the interface on the 
normal side (M = 0) so the interfaces lie parallel to the applied field.

Furthermore, the parallel component H|| must be the same on
both sides. In the normal domain, H ≥ Hc and in the superconducting 

domain H ≤ Hc,  so the only solution is H = Hc

0Hc

Suppose the normal fraction is;   B = Bn = 0Ha

M = Bn/0 - Ha

But Ha = Hc

Hint

HaHcH‘
c

H‘
c Hc

Ha

-Hc

M

Tsc(K) 0Hc(T)

Zn 0.9 0.005

Sn

Hg

3.7

4.2

0.03

0.04

Pb 7.2 0.08

Nb 9.5 0.20

Bar means 
average
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7. 4   Type I and Type II Superconductors

There is another, more important class which show two critical fields Hc1 and Hc2 These type 
II superconductors tend to be alloys with a high resistivity in the normal state, and a short 
electron mean-free path. They are also known as dirty superconductors. Flux partially 
penetrates the superconductor between Hc1 and Hc2, but this is an intrinsic physical 
property, which is unrelated to the shape of the specimen (c.f. §3.2). 

The superconductors we have considered so far exhibit perfect flux exclusion (at least for 
long rods) below the critical field Hc. They are usually pure metals, and the values of Tsc and 
Hc are low.  These are type I superconductors. 

HM
Hc

H

B
Type I

HM
Hc1 Hc2

H

B
Type II

Hc2Hc1

The flux begins to 
penetrate at Hc1, which 
may be very low, and a 
mixed, vortex state forms 
where tubes of flux, each 
a quantum h/2e ≈ 2 10-15 

T m2,  penetrate to 
thread the s/c matrix.  
Superconductivity is 
finally destroyed at Hc2

slope -1

slope µ0

Hc
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The difference is basically that the normal/superconducting interface has a positive free 
energy for type I (so the n/sc interface area is minimized) whereas it has a negative free 
energy for type II (so the n/sc interface area is maximized).

Hc can still be defined for a type II as the thermodynamic critical field Hc = (Hc1 Hc2)1/2

The material retains zero resistance up to Hc2, which may be very large, so they can be 
used as practical superconducting materials,

0Hc1 0Hc2

NbTi2 25 mT 10 T

Nb3Ge 20 mT 20 T

YBa2Cu3O7 50 mT    50 T

At 4.2 K

At 77 K

0 100 200 300 0Hc (mT))

-0M (mT)

50
100 nm

MFM image of the flux lattice of 
NbSe2 in 100 mT at 0.2 K

T

H

normal

vortex

superconductor

Hc2

Hc1

Pure lead (A) and In-doped (B-D) lead
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7.5. Thermal properties
5.1 Specific heat and entropy

The heat capacity of a superconductor shows a discontinuity at Tsc, but there is no latent heat.  
It is an excellent example of a second-order transition (like the Curie point of a ferromagnet)

G = U - TS + PV - BM where B = 0H’ is the externally applied field
dG = -SdT + VdP - MdB since dU = dQ – PdV + BdM (1st law) and  dQ = TdS (2nd law)

1st order transition → 1st derivatives of G are discontinuous
M = -(G/B)T,P      V = (G/P)B.T      S = -(G/T)P,B

2nd order transition → 2nd derivatives of G are discontinuous
Cp = (Q/T) = T(S/T) P,B     = -T(2G/T2)P,B

normal

superconductor

Cel

T

Celn = T

Cels = a exp(-/kBT))

Electronic heat capacity is plotted as a function of T
(corrected for the T3 lattice term)

The normal state can be stabilized by applying a small 
field, so the two curves can be compared for a type I sc

At low temperature, Cels = a exp(-/kBT), which suggests a 
gap  in the electronic density of states;  ≈ 1.5 kBTsc
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Experiments on microwave absorption also indicate that there is a gap at h = 3 - 4 kBTsc = 
2. The microwave experiment creates a pair of excited electrons. The thermal experiment 
measures the energy per statistically-independent electron.

T

Sel

normal

superconductor

Sel = T

Entropy S(T) = (C/T)dT  (= T in normal state)

The entropy is lower in the superconducting 
state; In some sense it is more ordered.

Note: Only electrons within kBT of the Fermi 
energy contribute to Cel , and the ones within 
kBTsc condense into the ordered, 
superconducting state. ns → 0 as T → Tsc

The transition is second-order provided there is no applied field. 

It actually becomes first-order when measured in the presence of an applied field. 
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5.2 Thermal conductivity

— At low temperature, most of the thermal conductivity  of a normal metal is due to 
conduction electrons. 

 = (2/3)(kB/e)2T

This is the Wiedemann-Franz law. / varies as T in a normal metal. In 
a superconductor,  is infinite but the electronic contribution to  disappears progressively as 
T → 0 (Two current model).  The superconductor is a poor thermal conductor; 
lead is used as a low-temperature thermal switch. n ≈ 100 sc for Pb at 1 K.

5.3 Thermoelectric effect

—Thermoelectric effects are not found in superconductors. 
Normally,  the thermal emf E = ST where S the thermoelectric power.

This is common sense. Imagine a circuit with junctions of dissimilar superconductors.          No 
thermal current accompanies the electric current.  Transport of entropy is zero.
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5.4 The isotope effect.

It was discovered in the 1950s that different isotopes of the same element show slightly 
different values of Tsc.

Tsc  M-n    where n ~ ½       M is the isotope mass

There is ~ 1% difference in Tsc between 204Pb and 208Pb.  
(Four stable lead isotopes 204Pb 206Pb 207Pb 208Pb)

n

Zn 0.45

Cd 0.32

Sn 0.47

Hg 0.50

Pb 0.49

n = ½  Is not found in every case, but it helped suggest 
that superconductivity was not a purely electronic effect. 

The isotope effect suggested a phonon coupling 
mechanism, via the electron-phonon mechanism.
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7. Superconductors

8. Theory

9. Superconducting Tunelling

10. Applications; High-TC superconductors

www.tcd.ie/Physics/MagnetismComments and corrections please: jcoey@tcd.ie

Metal Physics and Superconductivity
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8.  Macroscopic Theory
8.1 Thermodynamics

We saw that, thanks to the Meissner effect, the normal → superconducting transition is 
reversible. Hence we can apply thermodynamics and obtain an expression for the free energy 
difference between the normal and superconducting states. 

The energy density (J m-3) associated with a magnetic field in free space, where B = 0H, is 
(1/20)B2 = ½µ0H2 =½BH

Since the field penetrates a type I when H = Hc the free energy difference per unit volume is  
½ 0Hc

2.

In a type II superconductor, where the field penetrates above Hc1 we retain the idea of a 
thermodynamic critical field such that Hc1 < Hc < Hc2.          Hc = (Hc1 Hc2)1/2 

The free energy of a phase at a given temperature can also be found by integrating the S(T) 
curve obtained from the specific heat.

G(T) = - 0
T S(T’) dT’ see p. 58    S = -(G/T)

Note all thermodynamic potentials are per unit volume. 
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More  precisely:     dU = TdS + 0HdM - PdV 1st and 2nd law.

G = U - TS - 0HM + PV

dG = -SdT - 0MdH + VdP

At constant temperature, Gs(H,T) = Gs(0,T) - 0 0
H MdH’

= Gs(0,T) + 0 0
H H’dH’ since M = - H  (B internal = 0)

= Gs(0,T) + ½0H2

At the critical field,      Gn = Gs (G is the same for two phases in equilibrium, given P,T,H)
Gn(HcT) = Gs(HcT) 

But Gn does not depend significantly on field since M ≈ 0 in the normal state; Gn(HcT) = Gn(0,T) 

Gn(T) - Gs(T) = ½0Hc
2                                                                   (p. 36)

H

G

Hc

sc

n
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Gn(T) - Gs(T) = ½ 0Hc
2 G is Gibbs free energy per m3

Thermodynamics: (dG/dT)H = -S S is entropy per m3 §5.1  p.58

 Sn(T) - Ss(T) =  - 0Hc(dHc/dT)

Hence the latent heat of the transition, L = TS
is given by    L = -T0Hc(dHc/dT)

N.B.  L = 0  at Tsc (Hc = 0)
and at T = 0

When H = 0 or T = 0, there is no latent heat; There the 
transition is second order. Elsewhere it is first order.

T

H

sc

n

Tsc

2nd order

1st order

Furthermore         C = TdS/dT  
C =  Cn - Cs = T(dSn/dT - dSs/dT)

= - 0T {Hc(d
2Hc/dT2) + (dHc/dT)2} 

At T = Tsc ,  Hc = 0

Cn - Cs = - {0T(dHc/dT)2}T = Tsc

This is the discontinuity in the heat capacity at Tsc c.f. p.58

Hc0

sc

0
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G

TTsc

Gn

Gsc

Note that at Tsc the curves meet with the same 
slope (S= 0) [no latent heat at a second order 
transition]

e.g. for Al; 0Hc at T = 0 is 10.5 mT,  Tsc = 1.1 K    
(Gn - Gs) =  ½ (10.5 10-3)2/(4 10-7)

= 44 J m-3

This is not a large difference.

For Al,  = 2700 kg m-3,, AW = 27
the energy difference is just 5 10-9 eV/atom

Recall 1eV ≡  11605 K;    Tsc = 1.1 K ≈  1.2 10-4 eV

Since the energy difference is <<  (10-4 eV), it follows that only a small fraction of the 
electrons participate in the superconducting state. The fraction is of order 10-4

The fraction is just the fraction that are close enough to EF to participate in the electronic 
specific heat.
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8.2. London Theory
The two fundamental properties of Type I superconductors, zero resistance and zero flux 
density inside the superconductor, were successfully described by the London brothers in 
the 1930s. They made a postulate to replace Ohm’s law:

j =  E
conductivity

Londons’ postulate: j = -(1/0
2) A (1)

Check the dimensions [A] = Tm;  is a length
2.1  Vector potential of the magnetic field, A

The B-field is related to the vector potential by

B =  x A

Usually,  in this definition there is some freedom in the choice of A, since we can add any 
term of the type  where  is any scalar. It is known as a gauge transformation. It leaves B
unchanged because  x  ≡ 0.

A’’ = A +  (cf adding a constant to the scalar potential ). 

However (1) is not valid in any gauge. London pointed out that . j = 0.    i.e.  S j⊥dS = 0.
 from (1),  . A = 0.   so the choice of gauge is restricted to those scalar 

functions that satisfy Laplace’s equation . = 2 = 0
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Furthermore, at the surface of any conductor,  j⊥= A⊥= 0;           [c.f (1)] 
Hence  is a constant, and A is uniquely specified by . A = 0 plus the boundary conditions, 
— the London Gauge.

The other motivation for using the vector potential relates to the momentum of an electron 
(or other charged particle) moving in a magnetic field;

p = mv + qA
kinetic momentum       field momentum            recall, in quantum mechanics p = -i

In the absence of any applied field, we expect the ground state to have no net momentum:
p = 0  → v = -qA/m 

js =  nsqv = -nsq
2A/m          ns is the number of s/c electrons/m3

This is just the London postulate,  with 2 = m/(0nsq
2)     [London theory does not let ns vary]

2.2  Londons’ equations and penetration depth

Assume          j = -(1/0
2) A       for a simply-connected surface. Extra terms may be

added for a ring or hollow cylinder
 x j = -(1/0

2) B       London equation
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Now  x B = 0(j + dD/dt) Maxwell’s equation (M3)
neglect the displacement current under static conditions

from London equation,  x  x j = -(1/0
2)  x B

[ x  x X =  . X - 2X ]
 since . j = 0 and  x B = 0 j

2j = (1/2) j

Also,  x  x B = 0 x j  (M3) and . B = 0 (M1)

 From London equation 2B = (1/2)B

This equation accounts for the Meissner effect, since 
B = constant is not a solution unless B = 0

In a region where we go from free space where B ≠ 0 to a 
superconductor where the solution is

B(x) = B(0) exp -(x/)
 Is the London penetration depth.  = (m/0nsq

2)1/2      If q = e; ns= n;  = 10 -100 nm 
The London postulate implies flux exclusion inside the sample and gives the depth within 
which the field penetrates and the screening currents circulate. 

B or j

x

normal or            superconductor

free space


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Also,                m dvs/dt =   qE for zero resistance. 

 dj/dt =  (nsq
2/m) E

M4           x E = - dB/dt The London electrodynamic equations.
→ dB/dt = - (m/nsq

2)  x dj/dt c.f. London equation on p. 68.

2.3  Thin films
Consider a film of width 2a; B is applied || to z.

d2B/dx2 = (1/2) B(x)

B(x) = c{exp(x/) + exp-(x/)} if a << ||
The constant c is determined by B(a) = B(-a) = Ba

B(x) = Ba{cosh(x/)/cosh(a/)} 

B

-a        0        a             x    

Ba

Note that in the film, expelled flux density <<  Ba      

hence Gs(Ba) - Gs(0) << Ba
2/20

It follows that the critical field of the thin film will be increased relative to the bulk, by a factor 
of order /a. (The surface has an even-higher critical field Hc3).   c.f.Type II superconductors.
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(µ0/2)Hc
2

Gs

Gn

8.3. The idea of coherence length 

Besides the penetration depth, there is a second fundamental length scale that enters the 
theory of superconductivity — the coherence length  (xi).
It emerges naturally from the Landau theory, and the BCS theory, treated in later sections.

2.1 Here we give some idea of what is involved physically. The London postulate appears to 
be a local equation relating A(r) to j(r), but this is a simplification. We really need to average
A(r) over a volume of order  to get j.

Even Ohm’s law j = σE should be written as a nonlocal average over the mean free path l

j(r) = (3/4) {R[R.E(r’)] exp (-R/l)}/R4 dr’ R = r - r’

a >> l                                a ~ l

Gs = +0
Haµ0MdHa = (1/2)µ0Ha

2

Provided M = -H

Where flux penetrates, M = 0; |Mav| < Ha

Shaded areas are proportional to m, 
and to G.   
Al thin films a ~ 10 nm are used.
Hc can be increased by an order of 
magnitude
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The nonlocal form of the London postulate: j = -(1/0
2) A where 2 = m/(0nsq

2) is

j(r) = -(nsq
2/m)(3/4) {R[R.A(r’)] exp (-R/)}/R4 dr’ R = r - r’

In the presence of scattering, the coherence length is reduced:

1/ = 1/0 + 1/l

coherence length for pure metal     mean free path

2.2 An uncertainty-principle argument can be used to indicate the magnitude of 0.

The electrons involved are those within kBTsc of EF

Their uncertainty in momentum is p = 2 kBTsc/vF Fermi velocity

x ≈ /p ≈ vF/kBTsc

0 ≈ avF/kBTsc
constant a = 0.15

for pure metals, 0 is 100 - 1000 nm; In type I superconductors /0 ≈0.1
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2.3 An alternative argument is based on the idea that we cannot have a completely sharp 
interface between a superconducting and a normal region without paying a very high price 
in energy. It always costs energy to modulate the spatial density of superconducting 
electrons, just as it does to modulate the spatial density of normal electrons, as in the 
hydrogen atom, for example. 

We suppose that the superconducting electrons can be represented by a wave function (r)

with the meaning that *(r)(r)d3r = ns is the probability of finding the superconducting 
electrons at r. This is just the normal definition of a wave function but the assumption of a 
wavefunction for the superconducting electrons is pregnant with consequences.

Compare a normal plane-wave in one dimension 
(x) = exp (ikx),       

probability density * = exp(-ikx)exp(ikx) = 1
with the modulated wave function

(x) = {exp i(k+q)x + exp(ikx)}/2    
probability density * = (1/2){exp-i(k+q)x + exp-(ikx)}{exp i(k+q)x + exp (ikx)}

= (1/2){ 2 + exp -(iqx) + exp (iqx)} = (1 + cos qx)

ns 

2

0

x2/q

*

*
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The kinetic energy p2/2m in quantum mechanics is obtained by evaluating the operator 
(1/2m)(-i)2

For the plane wave,  E =  *(x) [(-2/2m)(2/x2)] (x)dx

E =  exp -(ikx) [(-2/2m)(2/x2)] exp (ikx) dx

E = 2k2/2m    the expected result for free electrons

For the modulated wave E =  *(x)[(-2/2m)(2/x2)] (x)dx

E = (2/4m)[(k + q)2 + k2] 

E ≈ 2k2/2m + 2kq/2m     if k >> q

The extra energy needed to modulate the wave is 2kq/2m. If this exceeds the energy gap, 
the superconducting state is destroyed.  The critical value of q is given by 2kq0/2m = Eg

Here kF can be used for k since only electrons near the Fermi energy are involved.

Define  0 = 1/q0 = 2k/2mEg = vF/2Eg , as before.
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3.1  Interfaces

The nature of the normal/superconductor interface depends on whether 0 >   or  0 < 

B or ns

x

normal            superconductor

 0

Type I; 0 > 

x

normal            superconductor

Suppose H < Hc

The interface energy is 
+ve for type I, 0 > 

Interfaces do not form 
spontaneously

G

½0H2

½0Hc
2

total energy

 0
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B or ns

x

normal            superconductor

Type II; 0 < 

x

normal            superconductor

Suppose H < Hc The 
interface energy is -ve
for type II, 0 <  the 
interface energy is -ve, 
and the interfaces form 
spontaneously.

G

½0H2

½0Hc
2

total energy

0      

0      

Type II; 0 < 
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8.4. Ginzberg-Landau Theory

This is the ultimate phenomenological theory. It is very useful,  and can be applied to many 
types of phase transition.

The idea is to write down an expression for the free energy per unit volume,  and deduce 
whatever is needed from it using thermodynamics.  The unknown coefficients in the 
expression are determined by experiment.

I. In the absence of a magnetic field, the free energy of the superconducting state is Gs(0)

II. All the sc electrons can be described by a wavefunction (r) so that 
*(r) (r) = ||2 = ns     where (r) = 0exp i . Here ns  is the density of sc electrons., 
which is uniform in zero applied field (B or E), except near an interface;  is the phase 
of the macroscopic wavefunction, which can be measured.

III. Gs(0) = Gn(0) + a1||2 + a2||4 + …….
Zero field.   This is the simplest choice of free energy, which has to be real. The 
coefficients a1, a2……are unknown and must be determined by experiment.   

IV The energy is raised in an applied magnetic field Ba by an amount (1/20)Ba
2.   [½0Ha

2]
If the flux is not entirely excluded, but if locally it is B, the increase is (1/20)(Ba - B) 2. 



PYU44P13  2023  78

V Also the electron density may vary with position in an applied field, (r) ≠ 0

The associated kinetic energy operator is (1/2m)(p - qA)2, so the energy is 
(1/2m)|(-i - qA)|2

Putting everything together: 

Gs(B) = Gn(0) + a1||2 + a2||4 + ……. (1/2m)|(-i - qA)|2 + (1/20)(Ba - B)2. 

Iin 1959, Gorkov showed that Ginzburg-Landau theory is the limiting form of BCS theory, 
valid near Tsc and generalized to allow for spatial fluctuations in electron density.

Also || ~ , the superconducting energy gap.
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4.1  The phase transition (B = 0)

The nature of a phase transition depends on the form of the Landau free energy.  For the 
superconducting transition, there is a small, uniform density of superconducting electrons 
||2 near Tsc.

|| is the order parameter in the theory

c.f.  M for a ferromagnet

P for a ferroelectric

Ordering is equivalent to symmetry breaking

Second order phase transition;   To have a nonzero minimum for ||2,  a1 < 0, a2 > 0 
To have a zero minimum for ||2,  a1 > 0, a2 > 0

Hence we need to choose a1 so that it changes sign at Tsc;    ||2 ≠ 0 for T < Tsc

a1 = c1(T - Tsc); a2 = c2

Gn - Gs

||2

Gs(0) = Gn(0) + a1||2 + a2||4 + ……

T > Tsc T< Tsc



PYU44P13  2023  80

Gs = Gn + a1(-a1/2a2) + a2 (a1/2a2)2 +  =  Gn - a1
2/4a2

But Gs - Gn = ½0Hc
2            Hc = - a1/(20a2)1/2        

hence Hc ~ (Tsc - T) in the vicinity of Tsc

The theory is only valid near Tsc, where ||2 is small

Tsc(K)

Hc

superconducting

normal

Next choose ||2 to minimize  Gs = Gn(0) + a1||2 + a2||4 + ……

Gs/||2 = 0 → a1 + 2a2 ||2 = 0;    

||2 = -a1/2a2
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4.2  Example of a semi-infinite slab.       (see Solymar & Walsh; Lectures on the Electrical 
Properties of Materials)

The ground state of the superconductor is found by minimizing the free energy

 Gs[A(r), (r)]d3r

A problem in variational calculus, to choose A(r) and (r) to minimize the integral.

Consider the one-dimensional  problem of a semi-infinite slab. 

B =  x A

x

z

y

0

Ba

Normal superconducting

Suppose Ba = Bz = dAy/dx    x A =   i j      k

Ba = (0, 0, Bz) = B;                          /x /y /z 

A = (0, Ay, 0) = A Ax       Ay       Az

 is /x;   it is parallel to 0x

A is parallel to 0y  

A
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Gs(B) = Gn + a1
2 + a2

4 + … (1/2m)[2(-/x)2 + q2A22] + (1/20)(Ba - Ay/x)2    (1)

since A. = 0 (the vectors are perpendicular) 

Euler’s theorem:     F[x,y(x), y’(x)]d3r  is minimized when  F/y - (d/dx)(F/y’) = 0

Gs/ - (d/dx)[Gs/(/x)] = 0 (2a)

Gs/A - (d/dx)[Gs/(A/x)] = 0    (2b)

From 1 and 2a,   2a1+ 4a2
3 + (1/2m)2q2A2 - (1/2m)(d/dx)22 (/x) = 0 

2/x2 = (m/2) 2a1(1 + q2A2/2a1m) + 4 (m/2)a2
3    (3)

From 1 and 2b,   (1/2m)2q22A - (1/0)2A/x2 = 0; 2A/x2 = q220 A/m                  (4)

The solution of (3) is subject to the boundary conditions        = 0, d/dx = 0 at x = 0   since 
vx = 0 at the surface, i/x - qAx= 0,              and        = 0,  d/dx = 0 at x = 

x



B = Ba;  = 0 B = 0;  = 0 

normal superconducting

If we ignore the field in the s/c region, 
taking A = 0 at x = ,  (3) becomes         
2/x2 = (2m/2)(a1 +2a2

3)

Gs(B) = Gn(0) + a1||2 + a2||4 + ……….... (1/2m)|(-i - qA)|2 + (1/20)(Ba - B)2. 

For simplicity,  is supposed to be real; 
Gn is independent of B
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The  solution is (x) = (-a1/2a2)1/2 tanh (x/2)     where  = /(2ma1)   the coherence length

Deep in the superconducting region, →0

Using the results 0
2 = - -a1/2a2     and   Hc = -a1/(20a2)               (3) and (4) become

2/x2 = (1/2){-(1 - A2/2Hc
2 20

2) + (3/0
2)}       (5)

2A/x2 = (1/2)(2/0
2)A (6)

where 2 = m/(0 0
2q2), the usual definition of penetration depth.    2 ~ 1/0

2~ -2a2/a1 (p.79)
These are the Ginzburg-Landau equations. 

Define  = /, the Ginzburg Landau parameter.  

Note that  is independent of temperature, since 2 and 2 both vary as  1/a1

From (6), provided >> ,  = 0 and A = A(0) exp -(x/) 

but B = A/x so B = (-1/)B(0) exp -(x/)   hence the penetration of B, as before.

In general,  ~ , so that  varies with distance, and the decay of B is modified.

If the density of s/c electrons is small, 3 can be neglected, and if A(x) = Bax, (field penetrates 
throughout)     2/x2 = -(2/2){(1 - Ba

2x2/2Hc
220

2) has solution Ba = 0Hc 2/(2n+1)        
The maximum value of Ba is 0Hc2, hence if > 1/2, the field inside is > Hc.   Hc2 = 2Hc

When  < 1/2  we have Type I   When  > 1/2  we have Type II
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8.5. Flux Quantization
Well inside a superconductor, the wave function will give a uniform density of 
superconducting electrons.

||2 = |0| 2 = ns

Hence there is a wavefunction of the form  = 0exp i where  is the phase, a macroscopic
variable.

Consider a ring carrying a supercurrent of density j.
Since p = mv + qA

v = (1/m)(p - qA) = (1/m)(-i - qA) 

 The particle flux is ½ {(*v) + cc} [number/m2/s]
Hence the current density is (q/2m){*(-i - qA) + [(-i - qA)]*}

 j = (nsq/m){ - qA} (1)  

This resembles the London postulate:  j = -(1/0
2) A where 2 =  m/0nsq

2

except for the extra term -i

Taking the curl of both sides of (1),    x j = -(1/0
2) B  – the London Equation. 

Recall x = 0 for any scalar .

j
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A dramatic consequence of (1) is flux 
quantization in a superconducting ring

Consider the dashed line buried deep inside the superconductor, where B = j = 0 

 j.dl = (nsq/m)  { - qA}.dl  = 0

By Stokes’s theorem,  A.dl = s x A.dS = s B.dS =  

 is the enclosed flux, which is independent of path, provided we avoid the penetration depth.

Also .dl  =  , the change of phase on going once around the ring. 

But  has to be single-valued, hence  = 2n or  = 2n

2n - q  = 0

 = 2n/q  = nh/q     The flux is a multiple of a fundamental quantum h/q

0 = 2.07 10-15 T m2    the flux quantum or fluxon

B
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Measurement of the flux quantum:

s/c cylinder plated on quartz rod

Rod diameter ~ 10 µm

Ba

pickup  coil

Ba

2e0/h

4

2

0

The fact that the flux quantum is actually observed is good evidence for the description of 
superconductivity in terms of the complex order parameter (r).

Furthermore, the charge q must be 2e, not e, in order to explain the value of 0.

This means that the charge carriers are electron pairs.
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How long  does the flux remain trapped in a superconducting ring?

d

The probability for escape for a flux quantum is attempt frequency x activation probability

The activation probability is P = exp -(G/kBT)

The activation volume that has to go normal for a fluxon to escape is ~ d2.

G = (0Hc
2/2) d2

Suppose d = 100 m  (~ thickness of a hair)

 = 10 nm 

0Hc = 100 mT → G ~ 10-16 J 

T = 100 K → -G /kBT = -105

The attempt frequency is of order kBT/ ~ 1013

P ~ 1013 exp -105 = 1013 10-43000 This is immense; the age of the universe is only 1018 s.
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8.6 Microscopic Theory (Bardeen, Cooper and Schreiffer)
4. 1. The Cooper pair
The essential element of the BCS theory of superconductivity is that the electrons form pairs
Consider two electrons, each with s = ½, somehow bound together with opposite spin to 
form an entity with S = 0, known as a Cooper pair.
The Cooper pair should behave as a boson, with all the pairs condensing into the same 
ground state.  All of them  are then described by the same wave function p(r).

We need some attractive force between the electrons to provide the coupling,  and reduce 
the energy below that of the normal electron gas.

In the original BCS theory, the attractive force was provided by the electron-phonon 
interaction, although other possible attractive interactions exist. The strong Coulomb 
repulsion between electrons in a metal is screened out at large distances.

Normally, when no supercurrent flows, the Cooper pairs have no net momentum.

k +             -k

Cooper pair:  q = 2e     m = 2me

K = 0       S = 0
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Attractive electron-electron interaction mediated 
by the ion cores in a crystal 



PYU44P13  2023  91

The Cooper pair is a quasi-bound state. The energy is lowered compared to that of two free 
electrons.

q
k1

k1 - q

k2 + q

k2

Unlike a single electron, the total momentum of a pair is 
unchanged by exchanging a phonon. 

The {k, -k} pair is scattered into another Cooper pair state 
{(k - q), -(k - q)} 

k for the electrons in the Cooper pair is ~ kF

The energy of the virtual phonon exchanged is ~ D

The spatial extent of the pairing is , the coherence length!

Energy is needed to break up a Cooper pair into two electrons. 
These are called quasi-particle excitations of the fully-paired bosonic ground state.

The energy required is 2

Hence the energy gap Eg = 2.

Virtual phonon 
exchange
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4.2 Energy of the Cooper pair. (Christman, Solid State Physics Ch 13)

We now calculate the energy reduction of a pair of electrons due to electron-phonon 
coupling.
The free electron wave functions are of the form  = exp ik.r; They have momentum k

In the absence of any attractive force, the wave function of the pair of electrons is 
p = {exp ik.r1 } {exp i(-k).r2 }
p =  exp ik.rp where rp = (r1 - r2)

Note: It looks like a single-electron state, but it actually represents a pair.

If there is a supercurrent, all the electrons have an additional net momentum  k in the 

current direction. Hence there is an extra factor exp ik.(r1 + r2) in the pair wavefunction.

We suppose that the individual electrons making up the Cooper pair have E ≈ EF and k ≈ kF

The interaction with the phonons scatter the electrons from one pair state to another, so the 
appropriate pair wavefunction is a linear combination of the individual ps, where Ak does 
not depend on rp

p (rp)  = kAk exp ik.rp (1)

rp

r2

r1
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Suppose the attractive force is associated with a potential U(rp).  We also assume, for 
simplicity, that the electrons are in states at the Fermi energy.  The Schrödinger equation is

-(2/2m){1
2 + 2

2} p + U(rp) p = (2EF + E) p (2)

Schrödinger’s equation can now be solved to give the change of energy E due to the 
attractive force.           Set 1

2 p = 2
2 p = - k2p    and use (1) and (2) 

k {(2k2/m) - 2EF - E} Akexp ik.rp =  -kU(rp)Akexp ik.rp

Set   k =  (2k2/2m - EF) rp = (r1 - r2)

k (2k - E) Akexp ik.rp = -kU(rp)Akexp ik.rp

Now  x  by exp-ik’.rp , integrate over the sample volume and use the identity exp i(k - k’).r 

d3r = kk’V   The integral = V, sample volume, when k = k’; when k ≠ k’ it is 0.

 (2k’ - E) Ak’ = -kUk k’Ak (sum over  k) (3)

where Uk k’= (1/V) U(rp)exp i(k - k’).rpd3rp

Now the states with k’ < kF are all occupied, hence Ak’ = 0 for k < kF.

rp

r2

r1
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Also the electron-phonon interaction cannot scatter electrons in states with E > EF + D or E < 

EF (Ak= 0 for k < kF). Therefore the scattering is within a narrow band of k near kF

Take Ukk’ = constant = -U if k and k’ lie within this narrow shell,  zero otherwise

From (3) Ak’ = UkAk/(2k’ - E)     (U is +ve for an attractive force)

To find E, sum over all states k’ within the narrow  shell,  and divide by k’ = k

1 = Uk’1/(2k’ - E)         Now use D() to convert the sum to an integral;

1 = U0 
D {D()/2(2k - E)}d where D() is the density of states near EF  (both 

spins)  

Take D(F) ≈ constant;    1= (UD/4)ln[(E - 2D /E ]

E = -2D/[exp(4/UD) - 1] 

E ≈ -2Dexp(-4 /UD)   when UD << 1    (4)    (~ true for all known s/c)

The change of energy is –ve, so the electrons in a Cooper pair are bound.                            For 

high Tsc the Debye frequency should be high (light elements), and U, D(F) should be large
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4.3  The superconducting ground state

The above treatment is for a single Cooper pair.  The treatment of the collective interaction of 
all the pairs in the superconducting ground state is more complicated.  We do not treat it 
here, but simply state some of the main results.

— The Cooper pair with energy (2EF + E),  E < 0  mixes states at EF with states above EF. This 
leaves some states at EF free, so that electrons below EF can also form pairs. If states below EF

are unoccupied, electrons can scatter into them, and this tends to break up the pair, so the 
binding energy is lost. 

— The range of one-electron states that are partly occupied in the BCS ground state is ± 0

around EF. at T = 0.  (smearing looks rather like the Fermi function for nonzero temperature)

0 = 2Dexp(-2/UD(EF))             c.f. Eq (4)

This is the binding energy of a Cooper pair, but it reflects the collective interaction of all the 
electrons.

— It can be shown that  Gn - Gs = (1/2) D(EF)0
2 but D(EF) = (3/2)n/EF       (see slide 15)

Gn - Gs = (3/4) n0 (0/EF)  (= (1/2)0Hc
2)

This is consistent with the idea that only a small fraction ~ (0/EF) of electrons form a quasi-
bound state near EF with a binding energy 0     But it is nonetheless a collective ground state. 
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How much energy is needed to break up the Cooper pair, and create two quasiparticle 
excitations (electrons) ? 

En1

EF

En2

Es     =  EF + [(En1 - EF)
2 + 0

2]1/2

Es     =  EF - [(En2 - EF)
2 + 0

2]1/2

Above the gap the electrons are quasiparticles - unpaired

Below the gap, the electrons are superconducting.

kx

ky

kx

Note that the gap is tied to EF, not like a 
semiconductor, where it is fixed to the 
lattice in reciprocal space.

Scattering of the Cooper pair 
electrons does not occur because 
there are no states to scatter into.

k

Persistent current

20
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Energy-level diagrams

Superconducting ground state

excited quasiparticles

0

Excited quasiparticles are usually  
produced two at a time, hence the gap 
is usually 20.

One electron can be injected from a 
normal electrode (Andreev reflection)

Semiconductor representation. An 
added electron (at T > 0), can go 
into the nearly-empty upper state or 
the nearly full lower state (and form 
a Cooper pair). Both are single-
electron bands

D()

G(=dI/dV)

V0/e

20



Cu           Nb
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1) kBTsc = 0.570 = 1.13 2Dexp(-4/UD(EF)   Note The bigger U, the higher Tsc and the bigger 

the resistivity in the normal state.

2)  varies with T

3) Isotope effect follows since D  1/M1/2

4) Zero resistance arises because scattering with small loss of energy is impossible because  of 
the gap

5) Flux quantization with m = 2me, q = 2e, 0 = h/2e

6)   Tsc 0  Hc (0) Hc(T) = Hc(0)[ 1 - 1.06(T/Tsc)
2]  for T << Tsc

Hc (T) = 1.74 Hc (0)[ 1 - (T/Tsc)]  for T ≈ Tsc

7)  and  emerge from the theory;   is the real-space  extent of the Cooper pair

8) Nothing sacred about phonon pairing.  Any mechanism that provides an attractive 
interaction between electrons might do.

9)   The macroscopic wavefunction follows from the unique BCS ground state for all electrons

4.4  Summary of  BCS predictions

TTsc

/0



PYU44P13  2023  99



PYU44P13  2023  100



PYU44P13  2023  101

6. Normal Metals

7. Superconductors

8. Theory

9. Superconducting Tunelling

10. Applications; High-TC superconductors

www.tcd.ie/Physics/MagnetismComments and corrections please: jcoey@tcd.ie

Metal Physics and Superconductivity

PYU44P13



PYU44P13  2023  102

Magnetism and Superconductivity; Part 2b

6 Simple models of metals

7. Superconductivity

8. Theory

9. Tunnelling

10. High Tsc Applications

www.tcd.ie/Physics/MagnetismComments and corrections please: jcoey@tcd.ie

J. M. D. Coey



PYU44P13  2023  

5 Superconducting Tunneling
Tunneling is a familiar phenomenon in quantum mechanics. The wave 

function of the electrons in a metal does not disappear abruptly at the surface, 

but it decays exponentially - an evanescent wave.  There is a significant 

probability of detecting an electron up to about a nanometer away from the 

surface.

Normal tunnellng across a vacuum or air gap is the basis of scanning 

tunneling microscopy (STM) [1986 Nobel Prize for Binnig and Rohrer]

5.1. Two normal metals
Consider a tunnel junction made from two normal metals, m1, m2:

m1 m2

d

insulator
m1 m2

d ~ 1 nm
eV

When the junction is 

biased, I  eV

I

V
I

V

E

103

c.f.  

Magnetic 

tunnel 

junction
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5.2  A normal metal and a superconductor - Giaver tunneling.

Consider a tunnel junction made from a normal metal, m, and a 

superconductor sc

m sc

d

insulator

d ~ 1 

nm

When the junction is 

biased, the gap can be 

easily measured 

directly

I

V

I

V0/e

There is a threshold below which no current flows. When V > 0/e, electrons can 

tunnel into the unoccupied quasiparticle states of the superconductor, above EF

sc m

eV

E

20

EF

104



PYU44P13  2023  

5.3.  Two superconductors. Josephson tunneling.

(PhD work of Brian Josephson in 1963 — Nobel Prize 1973)

Consider a tunnel junction made from two superconductors 

sc1 and sc2:

sc1 sc2

d

insulator sc1 sc2

d ~ 1 

nm

Cooper pairs may 

now tunnel across 

the insulating barrier

Assume sc1 and sc2

are made of the 

same metal

I

V

E

The two superconductors are weakly coupled across the insulating barrier. How 

does a supercurrent flow?

20

EF
20’

I

V20/e 

?

Ic
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x

Re()

106

Suppose the two superconductors are made of the same material, so 0 = 0’. 
The density of superconducting electrons ns is the same in both, so they are 

described by a wave function with the same amplitude 0. What may be 

different is the phase .

 =0exp i

If a supercurrent is crossing the junction, in zero applied field

j = (q/2){(*v) + cc}     (see § 3.5 p.83)

Set q = 2e, m = 2me p = - i No magnetic field,  A = constant      

j = - (iq/2m)[* + (*)] = - (e/me)ns (1)

If  = 0, there is no current, and  = const.    If j ≠ 0,  ≠ 0

When a constant supercurrent flows in the x-direction,  = a + 

bx.  = 0exp i = 0[cos(a + bx) + i sin(a + bx)]

 =0exp i k.r (See §4.2 slide 91)

 = k.r
 = k,   j = -(e/me)ns k    from (1)
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Inside the barrier, the macroscopic wavefunction is 

(x) = A exp x + B exp-x    depends on barrier height u (Joules);   = 
(2mu)1/2/

Let 1 and 2 be the phases on either side of the insulating barrier. 

Continuity conditions: A exp -a + B exp a = (ns)
1/2 exp iI    on the left side  and 

A exp a + B exp -a = (ns)
1/2 exp i2    on the right side

Hence A  = (ns)
1/2 {exp i2 exp a  - exp iI exp -a}/{exp2a - exp-2a}                

and        B  = (ns)
1/2 {exp i1 exp a  - exp i2 exp -a}/{exp2a - exp-2a} Then 

current in gap      j = (ie/m){ AB* - A*B } = (4e/m)ns sin(1 - 2)/(exp2a -

exp2a)

j = j0 sin(1 - 2)     where  j0 = (4e/m)ns/(exp2a – exp-2a)      (1’)

The two 

superconductors are 

supposed to be 

identical, but with 

different phases. 

The barrier introduces a 

phase difference   (1 -
2)

-a a x

Re()

sc  I i sc  

2
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A supercurrent flows across the junction when V = 0. It depends on the 

properties of the insulating barrier, a and . (~√u) !  j0 is the maximum 

possible supercurrent density. It is the critical current of the junction. When a 
<< 1, exp2a = 1 + 2a  + …., ,  j0 = (e/ma)ns. The magnitude of the 

supercurrent depends on the phase difference (1 - 2) across the junction. 

j

V
20/e

j0
The junction carries a normal current 

and a supercurrent, Below j0 the 

supercurrent dominates. If the current is 

increased, when it reaches j0 the 

junction switches to the normal state (b -

c).                                On decreasing 

the current to zero, 

a

b

d

c

the device follows c - d, and then returns to a. The Josephson junction is a 

fast bistable switch. Only the dc current is plotted in the figure.  This is the dc 

Josephson effect. Capacitance of junction is tiny, so switching is extremely 

fast. RC ~ ps.

But when a voltage V is applied cross the junction, there is also a rapidly-

oscillating ac supercurrent, the ac Josephson effect.
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5. 3.1 ac  Josephson effect.
When a voltage is applied to the junction, electrons may:

i) tunnel as normal individual electrons when V >> 20/e

ii) Tunnel as Cooper pairs. When a pair crosses the junction, it must lose its 

extra energy to attain the condensed state, which it does by emitting a photon 

with energy

h = 2eV (2)

V is typically 1 mV (≈ 10 K)    1 mV →  = 2 x 1.6 10-19 x 10-3/6.6 10-34 = 484 

GHz, hence  is in the high microwave range.  

The junction emits microwaves when a voltage is applied across it.

An ac tunnel current of this frequency also appears across the junction. 

Since frequency can be measured very accurately, the Josephson junction is 

used in standards laboratories worldwide to define the volt.

When the energy of the centre of mass of the pair is E, a factor exp -iEt/
must be included in .  = 2eVt/. Time varying current → (t)  2eV= d/dt 

implies a voltage. The Josephson junction equation becomes 

j = j0 sin(1 - 2 - 2eVt/) 
109



The supercurrent is now sinusoidal in time with  = 2eV/h,  = 2eV/

Finally, if the Josephson junction is irradiated with microwaves of frequency ’
and amplitude V’0 V’ = V’0 sin ’t  the equation becomes

j = j0 sin{ 1 - 2 - 2eVt/ + (2eV’0/) sin ’t }

Expand using sin (A + B) = sin A cos B + cos A sin B 
where A = 1 - 2 - 2eVt/ and  B = (2eV’0/) sin ’t

Also expand sin (2eV’0/) sin ’t and cos (2eV’0/) sin ’t  as Fourier series.

→ j = j0 0
 An sin{ 1 - 2 - (2eV/ - n’)t}  

Hence, as V increases, a dc current flows 
when V = n  ’/2e

Shapiro steps occur when V is a
multiple of ’/2e

This gives /e from V’0() measurements

j0

V

j

2/e
PYU44P13  2023  
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5.3.2 Superconducting quantum interference devices (SQUIDS)
Now we combine Josephson junctions with the idea of flux quantization in a 

ring. There must be two junctions in the ring if we are to be able to apply or 

measure a dc voltage across it.

The junctions may be tunnel junctions, or 

point contacts (weak links) with a much 

reduced ic (or jc) denoted    ica

Suppose the two junctions are identical.  The phase jumps across the junctions 

are    a and b. These decide the supercurrent flowing in the ring. The phase 

change  within each superconductor is negligible, since the current is so small. 

There is a phase difference when a field is applied. It is across the sc, not the Jj, 

which is very thin. 

When the field is first is applied, a supercurrent flows in the ring so as to exclude 

it. However, if i  > ica for the weak links, the flux cannot be entirely excluded from 

the ring. It penetrates, one fluxon at a time, and the direction of the current in 

the ring changes sign periodically as B0 is increased, but the flux in the ring is ≈ 

the applied flux.           The weak circulating current introduces  at the weak 

links    Read Ross-Innes and Rhoderick, Ch 11.

b

a

 B

i

111

NB from (1) on p 83,j = (nsq/m){ - qA} j ≈ 0,  ≈ 0

in sc
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If the weak links were absent, the applied field would cause a supercurrent to 

flow in the loop in order to exclude the flux. The flux would only penetrate the ring 

when the critical current density jc of the superconductor is reached. (jc ~1000 

A/mm2 in Nb at 4K) c.f p.99

When the weak links are present, the flux penetrates 

as soon as the critical current density of the junction jca is reached. Flux 

penetrates one fluxon at a time, and the sense of the supercurrent in the ring 

reverses periodically as B increases. In general L ica << , and in the the device 

we consider  L ica << 0 so all flux penetrates the ring.

From §3.5, we can write the condition for flux quantization around the ring,

(3)

The phase change around the superconducting circuit is 2n.

[(a - b) + 2n] - q = 0        hence  + 2n = 2/0      (0 = h/q)

 j.dl = (nsq/m)  { - qA} .dl = 0

tot

0   2 0

 = BA

2



Since L ica << 0 the 

induced circulating 

current cannot even 

generate one fluxon. 

The flux in the ring ~ 

a
The quantum condition that the phase change around the ring is 2n is 

satisfied because of the phase differences at the weak links. (B) = 
(2e/)A .dl = 2/0

Two currents can make  a multiple of 2; 

phase differences appear across each weak 

link.
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0   2 0

 = BA
i

0   2 0



2



tot

The current in the loop 

oscillates between ica and -

ica as the applied field is 

increased. The loop will 

contain an integral number of 

fluxons when it is 

superconducting..

ica

- ica

I



Ic

0   2 0

2ic
a

The current oscillations are detected 

by means of a sense current I, 
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b

a

 B

II

V

i

i
Pass a sense  current  I across the 

SQUID. Half of it passes in each 

arm. There is a current of I/2 - i in 

junction a, and a current of I/2 + i in 

junction b

From (3)    { - 2eA} .dl = 0

.If  0 is the phase difference between X and Y associated with I.   XY ≈ a 

≈ b

a = 0 - /0    b = 0 + /0            Phase change is the same if 

B = 0

Ja = j0 sin (0 - /0 ) Jb = j0 sin (0 + /0 )         from the J J Eqn (1’)

J = Ja + Jb = j0 [sin (0 - /0 ) + sin (0 + /0 )] j0 is max j in either

junction

J = 2 j0 sin 0 cos (/0 )   since 

sin(A±B)=sAcB±cAsB

Jc = 2j0 |cos (/0 )|

X          Y           
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SQUIDS are used a very sensitive magnetometers, flux changes of 0/100 

can easily be detected.

Suppose the area of the loop is 1 cm2,  10-4 m2.

0 = 2 10-15 T m2 

Bmin = (1/100) x 2 10-15 / 10-4 = 2 10-13 T !

Hence we use SQUIDS to detect the very weak fields produced by the 

biological currents produced in the heart, brain etc.

Geological prospection. SQUIDS are used to map anomalies in the Earth’s 

magnetic field that reflect buried iron ores.

The SQUID is used as a sensitive ammeter to measure very tiny currents via 

the fields they produce. Small voltages are measured by passing currents 

through a known resistor.
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There are various types of ‘weak links’, all of them showing a small critical 

current across the constriction, where magnetic field can penetrate.

Nanoconstriction         Point contact      Grain bouundary     Tunnel junction                

RSJ

A supercurrent can pass through the weak link, and the phase difference 
increases with current, reaching the critical value when  = /2. Only for the 

tunnel junction does the current vary as the sine of , but otherwise all the 

weak links resemble eachother.

A short weak link has d < . The ideal Josephson effect is seen only in short 

links

The point contact junctions are most suitable as rf radiation sources and 

detectors, as the radiation can be easily coupled in and out of them. Rf SQUIDS 

use a point contact.

A layer of normal metal can also be used to separate the two superconductors. 
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A single Josephson junction or point contact is sensitive to the magnetic field.  

There is a dc current which depends on the flux threading it.  

I = j0a [sin(/0) / (/0)]sin 

Here a is the junction cross section area and  is the flux threading the 

junction.

0      1       2      3       4   

/0
This resembles the Frauenhofer diffraction pattern from a single slit. 
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— Switching of a Josephson junction can be very fast;  We can estimate the 

switching time from the junction capacitance C, and its critical current I0 and the 

switching voltage Vswitch = 20/e  (§ 5.3)

switch ≈ RnC = CVswitch/I0

C = 0a/d where a is the junction area and d = 2a ≈ 1 nm;     Rn ~ 1/a

Hence the switching speed is independent of area. This means that a scalable 

technology could be built around superconducting electronics.  The switching 

speed depends on the superconducting material, and the barrier thickness d. 
(which must be as thin as possible) I0 = (20/eRn).   

A 100 x 100 m2 junction may have Rn ≈ 

0.1  and C ≈ 4 10-10 F (0 = 1/µ0c
2 = 8.85 10-12) For a conventional 

superconductor 20/e ≈ 1 mV, I0 ≈ 0.1 mA, j0 = 106 A m-2

switch ≈ 4 10 -12 s

— Suppress the hysteresis of a Josephson junction by placing a resistive shunt 

across the junction  (RSJ)X

X
X

R

dc SQUID  dc JE                     rf SQUID    ac 

JE
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— Flux transformer.   A superconducting circuit. The flux threading the loop 

cannot change. 

B

IB’

B

IB’

I

The gradiometer has a figure-of-8 pickup coil, which eliminates the effect 

of any uniform (fluctuating) field B0 and responds to the local field B. It 

measures ∇B.   

B0
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— Superconducting logic

X X X

i
A B

A and B are control 

lines which produce a 

field which is 

sufficient to switch 

the nearby junction. 

We make the 

junctions so that any 

one can carry a 

supercurrent of i/2, 

(but not 2i/3)

The structure acts as 

an AND gate. When 

A and B are on, then 

a voltage appears at 

C

C

If the junctions switch between i/3 and i/2, it acts as an OR gate.

The gate is dissipative,  and can be reset with a -ve current pulse.

— Microwave resonant cavities, antennae

— Jj for quantum computing. 
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6.1 New Superconductors
The record for Tsc (23.2 K)  was held by Nb3Ge up to 1986. 

Many attempts were made to find new superconducting material;             

these included

– Organic materials

– Heavy fermion metals

None yielded a higher Tsc until Müller and Bednorz came up 

with an oxide material in April 1986 that showed signs of 

superconductivity above 30 K. They were awarded the 

Nobel Prize the following year! Their material

(La1-xBax)2CuO4

has the tetragonal K2NiF4 structure, with planes of copper and oxygen. 

The end-member La2CuO4 is an antiferromagnetic semiconductor.                        

The formal valences are La3+
2Cu2+O2-

4.   Cu2+ has a 3d9 configuration. 

It has a strong preference for square-planar coordination.

The composition was (La1.8Ba0.2)2CuO4  or  La3+
1.8Ba2+

0.2Cu2+
0.8Cu3+

0.2 O2-
4

Cu3+ has a 3d8 configuration.  A mixed-valence compound. 

La

O

Cu

Cubic 

A15

Nb3Ge
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x

af

6 7

sc

100

200

Are chains or planes 

important ?

There was a breakthrough in February 1987, 

when several groups synthesized the 

compound, YBa2Cu3O7 which had a Tsc of 93 K !

It is mixed-valence:  Y3+Ba2+
2Cu3+Cu2+

2O7

There are two copper sites in the structure:     

Cu(1) in chains parallel to orthorhombic b axis. 

Cu(2) in planes with square planar coordination.

The oxygen stoichiometry could be tuned from                  

O6 to O7 with drastic changes of properties.

met

al

pseudo

gap
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Then, in 1988 a new family of superconductors Bi2Sr2Can-1CunO4+2n was 
discovered:

Bi2Sr2CuO6+ Tsc =  10 K n = 1

Bi2Sr2CaCu2O8+ Tsc =  85 K n = 2

Bi2Sr2Ca2Cu3O10+ Tsc = 110 K n = 3         

These are layer compounds with a 

structure made up of building blocks 

of (BiO)2 double layers and stacks of 

n(CuO2) layers, intercalated by (n-

1)Ca atoms.

Tsc is lower in the n = 4 compound. 

Related compounds with Tl and Hg 

exhibit Tsc of up to 148 K.

Other new superconductors

Cs3C60 40 K     (1990)     

MgB2 39 K     (2001)   

Ba0.3K0.2FeAs 37 K     (2008)

n= 1                               n= 

2
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The idea of Bednorz and Muller was to develop a new 

coupling  mechanism coupling for a high Tsc

superconductor using Jahn-Teller polarons. They tried 

mixed-valence oxides which exhibit hopping 

conduction (Their idea turned out to be wrong!).

dxy dyz dzx

dx2 - y2 dz2

dyz dzx

dxy

dz2

dx2 - y2

Undistorted Distorted        

cubic site tetragonal site

For d9 the square planar 

coordination is stabilized 

when the dx2 - y2  orbital is 

empty  

6.1.1 Bipolaron superconductivity.

Free ion

126
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6.1.2 Electronic Structure.

The chemical systematics of high-Tsc superconductivity establish that it is 

the CuO2 layers that are the common feature. There is a strong two-

dimensional character to all these high-Tsc oxides.

o o o o o

o o o o o

o o o o o

Cu 2+

O 2-

p

dx2 -

y2

dxy dyz dzx

dx2 - y2 dz2

dyz dzx

dxy

dz2

dx2 - y2

px
pz

py*

*

The top of the conduction band is a 

mixture of 2p and 3d holes. Hole 

conduction gives a positive Hall effect RH. 

In the normal state  

Cu2

+

O2-
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If we remove an extra electron from copper to make Cu3+ ‘3d8’ it is an 

experimental fact that the extra hole is mainly localized on the oxygen. The 

configuration of ‘Cu3+’ is closer to 

3d9L — 3d92p5             (L is a ligand hole)

than 3d8 — 3d82p6 

The holes formed by adding Ba or Sr to LaCuO4 have mainly oxygen 2p 

character.

The nature of the holes was determined by electron photoemission 

experiments.
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6.1.3 Ceramics.
The cuprate superconductors are oxide materials. They are black ceramics, 

usually prepared by solid state reaction of powders of the constituent oxides. 

They are formed of tiny crystallites sintered together in a brittle porous mass. 

The bulk ceramics are formed of superconducting crystallites with grain 

boundaries between the grains forming a network of weak links.

They cannot be fabricated into wires by normal metallurgical processes. 

Superconducting tapes are made from composites of the oxide with silver.

It is possible to grow single crystals for studies of fundamental physical 

processes, and  thin films can be grown on single-crystal substrates such as 

SrTiO3 by pulsed laser deposition or sputtering.

SrTiO3 has the perovskite structure.                                

The lattice parameter is very close to 

that of  YBa2Cu3O7

The structures of all the high-Tc oxides

are derived from perovskite.

Sr

Ti

O
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-

+ +

-

There are four nodes around the 

gap in the Fermi surface, where the 

wavefunction changes sign. 

k = {coskxa - coskya)

6.1.4 Tunelling

A key question was whether the high-Tsd materials show the same electron 

pairing as in normal superconductors.

It was possible to make a Josephson junction from Nb and YBa2Cu3O7   

Hence Cooper pairs with S = 0 also exist in the oxide.

However the electrons at the Fermi energy have dx2 - y2 character, rather 

than s character. It is d-wave rather than s-wave superconductivity.

Flux is quantized as [n + (1/2)] 0

in the triple junction SQUID.
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1.5  Anisotropy of the physical properties.

a) Conductivity.

All the discussion in the first five chapters has been in terms of the 

free-electron model. The metallic character of the high-Tsc oxides is 

clearly very anisotropic or even two-dimensional — two-dimensional in 

the plane, and tunelling from plane to plane along the tetragonal c-axis.

0 100 200 300      T(K)

|| ( m)    i.e. ||c

3 

2 

1

0

⊥ ( m)

300

200 

100

0
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NB ab (⊥) is or order 3  m at room temperature → mean free path ≈ 

lattice spacing.  (see Ch1 §2.1.1  p.10)

A bad metal makes a good superconductor.

The conductivity along the c-axis is clearly semiconducting.

c) Critical field Hc2.

100 T

0Hc2 (T)

5

0

H⊥
H||

Slope -4 T/K

Slope -1 T/K

From the slope near Tsc, the values of 

Hc2 at T = 0 can be estimated using 

Hc(T) = 1.74 Hc(0)[1 - T/Tsc]      (§4.4  

p97) 

H||
c2 =   53 T

H⊥
c2 = 211 T    These are enormous!

Hc = 1 T (Thermodynamic critical 

field). 
The corrolary is that the coherence lengths are very small. 

Ginzburg Landau theory gives Hc2 = 0/20
2.  (The maximum possible 

packing of fluxons in the vortex state determines Hc2)

Hence || = 1.8 nm ⊥ = 0.5 nm  132
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The penetration depth depends on the conduction electron density in the 

isotropic case 2 = m/(0nsq
2)

→|| = 210 nm

⊥ = 60 nm

Hence || = 120 

⊥ = 120        It is an extreme type II superconductor. 

Recall  > 1/√2 is the condition for type II

Now the pinning energy is V0Hc
2/2 

V = || ⊥
2   ~ 10-27 m3

Hence the activation energy 10-27 12/1.38 10-23 8 10-7 ~ 30 K

Flux flow (creep) occurs near Tc.   The flux lattice has to be pinned, by 

structural defects, in order to avoid dissipation. 
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6.2. Applications
A major application of low-Tc superconductors is superconducting magnets. 

106 km of NbTi wire has been used for 20,000 Magnetic Resonance Imagers

5 T split pair 
Large hadron collider quadrupole magnets

MRI scanner
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‘106 km of NbT i wire has  been used for 
20,000 Magnetic R esonance Imagers ’

Q. Estimate the magnetic field B in the bore of 

an MRI machine, given that the current passing in 

the NbTi superconducting wire is 100 A.
A. The H--field in a long solenoid is  H  = nI    Units are Am-1

number of turns/m          current in the windings

Hence B  = µ0nI
Estimate from the photo:  Length of coil 1.8 m;  Average radius 0.4 m

Length of wire used in one MRI; 106/20,000 = 50 km !
One turn is 2πr  = 2.5 m.     No of turns 50,000/2.5 = 20,000  

n = 20,000/1.8 = 11,111 turns/m.  H =  nI  =  1.1 MA/m
B = µ0H = 4π 10-7 x 1.1 106

B = 1.4 T.  
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SQUID sensors for magnetometers, nondestructive testing, geophysical 

prospection… incluing high-Tsc SQUIDS and microsquids

SQUID sensor arrays for magnetocardiography and 

magnetoencelography (MEG)

Specialised diagnostic tool,

Mostly for epilepsy

High-Tsc microwave resonant cavities, bolometers ..
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Electrical interconnects:

High Tsc leads are often used with low-Tsc superconducting coils
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Electrical transmission lines. 

500 MW high Tsc YBCO power transmission lines  (up to 800 m long)
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An exciting prospect; 

Compact fusion reactors in 10 years!

https://www.theguardian.com/environment/2018/mar/09/nucl

ear-fusion-on-brink-of-being-realised-say-mit-

scientists?CMP=share_btn_link

Current nuclear fusion experimental facilities (JET, ITER) are tokamaks that 

inertially confine a plasma at enormously high temperature (~ Tsun)  in a toroidal 

magnetic field.  3.45 T at JET, 11.8 T at ITER for the toroidal field. Bigger fields will 

be possible with high-Tc superconductors. Opening the possibility of much smaller 

fusion reactors  ( ~ 1GW) - one in every city.

https://www.theguardian.com/environment/2018/mar/09/nuclear-fusion-on-brink-of-being-realised-say-mit-scientists?CMP=share_btn_link
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Another really exciting prospect; 

Quantum computing with Josephson junction Q-bits

.A JJ behaves as an ‘artificial atom’ at low temperatures – a simple 2-level 

system with a ground state |0> and and an excited state |1> which can be 

modelled as if it is was a pseudospin S = ½, oriented in a direction 𝛳,ɸ 

relative to the quantization axis z.

Tn general the state if the system is a quantum superposition

Ψ = cos𝛳 |0>   +   expiɸ  sin𝛳 |1> 

This state, with a long coherence time, is the requirement for a Q-bit

There are many possible realizations of pseudospin S = ½ systems, but the 

Jj is currently the most promising.


