Skip to main content

Trinity College Dublin, The University of Dublin

Menu Search



Michael Monaghan
Ussher Assistant Professor, Mechanical & Manuf. Eng

Biography

Dr. Michael Monaghan is an Ussher Assistant Professor in Biomedical Engineering at Trinity College Dublin, the University of Dublin Dr. Monaghan performed his Postdoctoral research in Germany as a recipient of a prestigious Marie Curie Individual Fellowship. His research was coordinated between the Department of Cell and Tissue Engineering in the Fraunhofer Institute for Interfacial Engineering and Biotechnology and the Department of Women's Health in University Clinic Tubingen. During this period he has published a number of key papers in the field of human valvulogenesis, embryonic stem cell research, cardiomyocyte differentiation, biomaterials and non-invasive optical characterisation (Raman microspectroscopy, fluorescent lifetime imaging (FLIM), multiphoton and second harmonic generation (SHG) imaging). Dr. Monaghan received both his B.Eng (Biomedical) and Ph.D. (Biomedical Engineering) from the National University of Ireland Galway (NUIG).During his Ph.D. Dr. Monaghan received a number of research awards such as travel awards from the European Molecular Biology Organisation (EMBO) and the German Academic Exchange Service (DAAD), and the 2015 Julia Polak European Doctorate Award in recognition of the achievements made during his Ph.D. Dr. Monaghan is actively involved in the tissue engineering and regenerative medicine international society (TERMIS) as Chair-Elect of the EU Student and Young Investigator Section, and was recently promoted to EU Chair of this section. Lab Website: www.monaghanlab.com

Publications and Further Research Outputs

Peer-Reviewed Publications

Monaghan M.G, Holeiter M, Brauchle E, Layland S.L, Lu Y, Deb A, Pandit A, Nsair A, Schenke-Layland K, Exogenous miR-29B delivery via a hyaluronan-based injectable system yields functional maintenance of the infarcted myocardium, Tissue Engineering, Part A, 2017 Journal Article, 2017

Lakner P.H*, Monaghan M. G*, M, Möller Y, Olayioye M.A, Schenke-Layland K. , Applying a phasor approach analysis of multiphoton fluorescence lifetime imaging microscopy measurements to probe the metabolic activity of three-dimensional in vitro cell culture models., Nature Scientific Reports, 7, 2017, p42730- Journal Article, 2017 DOI TARA - Full Text

Brauchle E, Knopf A, Bauer H, Shen N, Linder S, Monaghan MG, Ellwanger K, Layland SL, Brucker SY, Nsair A, Schenke-Layland K, Non-invasive Chamber-Specific Identification of Cardiomyocytes in Differentiating Pluripotent Stem Cells., Stem cell reports, 6, (2), 2016, p188-99 Journal Article, 2016 DOI

Monaghan MG, Linneweh M, Liebscher S, Van Handel B, Layland SL, Schenke-Layland K, Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development., Development (Cambridge, England), 143, (3), 2016, p473-82 Journal Article, 2016 DOI

Monaghan M.G, Holeiter M, Layland S.L, Schenke-Layland K, Cardiomyocyte generation from somatic sources " current status and future directions , Current Opinion in Biotechnology , 40, 2016, p49 - 55 Journal Article, 2016 DOI

Monaghan MG, Kroll S, Brucker SY, Schenke-Layland K, Enabling Multiphoton and Second Harmonic Generation Imaging in Paraffin-Embedded and Histologically Stained Sections., Tissue engineering. Part C, Methods, 22, (6), 2016, p517-23 Journal Article, 2016 DOI

Lakner P, Möller Y, Olayioye M, Brucker S.Y, Schenke-Layland K, Monaghan M.G., Multiphoton Microscopy in the Biomedical Sciences XVI, Proc SPIE9712, SPIE BioS Multiphoton Microscopy in the Biomedical Sciences XVI, San Francisco, 14th March 2016, edited by Ammasi Periasamy; Peter T. C. So; Karsten König , 2016, pp97120X Conference Paper, 2016 DOI

Optical reprogramming and opticalcharacterization of cells using femtosecond lasers in, editor(s)König K, Ostendorf A , Biomedical Applications in Optically-Induced Nanostructures for Biomedical and Technical Applications, De Gruyter , 2015, pp159 - 178, [1. Uchugonova A, Augspurger C, Monaghan M, Schenke-Layland K, Konig K] Book Chapter, 2015 URL

Browne, S., Monaghan, M.G., Brauchle, E., Berrio, D.C., Chantepie, S., Papy-Garcia, D., Schenke-Layland, K., Pandit, A., Modulation of inflammation and angiogenesis and changes in ECM GAG-activity via dual delivery of nucleic acids, Biomaterials, 69, 2015, p133-147 Journal Article, 2015 DOI

Dash, B.C., Thomas, D., Monaghan, M., Carroll, O., Chen, X., Woodhouse, K., O'Brien, T., Pandit, A., An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia, Biomaterials, 65, 2015, p126-139 Journal Article, 2015 DOI

Groeber, F., Engelhardt, L., Egger, S., Werthmann, H., Monaghan, M., Walles, H., Hansmann, J., Impedance Spectroscopy for the Non-Destructive Evaluation of In Vitro Epidermal Models, Pharmaceutical Research, 32, (5), 2015, p1845-1854 Journal Article, 2015 DOI

Monaghan, Michael, Browne, Shane, Schenke-Layland, Katja, Pandit, Abhay, A Collagen-based Scaffold Delivering Exogenous MicroRNA-29B to Modulate Extracellular Matrix Remodeling, Molecular Therapy, 22, (4), 2014, p786-796 Journal Article, 2014 DOI

Monaghan, M., Augspurger, C., Brauchle, E., Lakner, P., Breunig, G., Konig, K., Schenke-Layland, K., Fluorescent live time imaging from pluripotency to differentiation in mouse embryonic stem cells reveals endogenous autofluorescence profiles, Journal of Tissue Engineering and Regenerative Medicine, 8, 2014, p300-301 Journal Article, 2014 DOI

Schesny, M.K., Monaghan, M., Bindermann, A.H., Freund, D., Seifert, M., Eble, J.A., Vogel, S., Gawaz, M.P., Hinderer, S., Schenke-Layland, K., Preserved bioactivity and tunable release of a SDF1-GPVI bi-specific protein using photo-crosslinked PEGda hydrogels, Biomaterials, 35, (25), 2014, p7180-7187 Journal Article, 2014 DOI

Energy Regeneration systems in cell free protein synthesis in vitro in, editor(s)Bethaz C, Li Puma V , New Research on Protein Synthesis, Nova Science Publishers, Inc, 2013, pp67 - 76, [2. Kahlig A, Schwedhelm I, Monaghan M, Thein M, Hansmann J] Book Chapter, 2013 URL

Michael Monaghan, An injectable collagen scaffold delivering exogenous microRNA as a therapy to modulate extracellular matrix remodelling , NUI Galway, 2013 Thesis, 2013 URL

Monaghan, M., Greiser, U., Wall, J.G., O'Brien, T., Pandit, A., Interference: An alteRNAtive therapy following acute myocardial infarction, Trends in Pharmacological Sciences, 33, (12), 2012, p635-645 Journal Article, 2012 DOI

Monaghan, M., Pandit, A., RNA interference therapy via functionalized scaffolds, Advanced Drug Delivery Reviews, 63, (4), 2011, p197-208 Journal Article, 2011 DOI

Monaghan, M. Browne, S. Wang, W. Pandit, A.(ed.), Scaffold mediated non-viral inhibition of collagen type I and type III in cardiac fibroblasts, 2011 Proceedings of a Conference, 2011 URL

Monaghan, M. Holladay, C. Pandit, A.(ed.), A crosslinked collagen type i biomaterial reservoir for non-viral gene delivery in vivo, 2011 Proceedings of a Conference, 2011

Monaghan M, Greiser U, Cao H, Wang W, Pandit A, A ligand enhanced dendritic PEGylated poly (2-(dimethylamino) ethyl diacrylate) as a vehicle of microRNA, Drug Delivery and Translational Research, 2, 2011, p406 - 414 Journal Article, 2011 DOI

Dash, B.C., Réthoré, G., Monaghan, M., Fitzgerald, K., Gallagher, W., Pandit, A., The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility, Biomaterials, 31, (32), 2010, p8188-8197 Journal Article, 2010 DOI PURL

Research Expertise

Description

Dr. Monaghan's research focus is the generation of cardiac tissue in vitro towards the purpose of disease modelling and therapeutic transplantation. Heart attacks are an increasing healthcare burden and despite many medical advances, once heart muscle dies following a heart attack it does not heal sufficiently, and becomes scarred, leading to reduced function and quality of health. It is possible to generate new heart muscle from stem cells and more recently from adult cells of the body (e.g. skin cells) but such new heart muscle is not fully functional or mature as it is not experiencing the natural environment of the heart. His research is focused on the use of tunable biomaterial scaffolds using both biomechanical and biomolecular stimuli to mimic the cardiac environment and achieve robust cardiomyocyte transdifferentiation. Dr. Monaghan research interests also include non-invasive microscopy. Multiphoton microscopy is a powerful method for the nondestructive evaluation of deep-tissue, cells and extracellular matrix (ECM) structures. By interacting with highly non-centrosymmetric molecular assemblies, the non-linear phenomenon of second harmonic generation (SHG) has also proven to be an important diagnostic tool for the visualization of collagen and myosin. Multiphoton microscopy can be additionally equipped with time correlated single photon counting boards which allow extensive analysis of the photons being emitted from any material due to excitation by a specific wavelength and provides a photon distribution analysis. Notably, this facilitates fluorescence lifetime imaging (FLIM), which produces images based on the differences in the exponential decay rate of the fluorescence from a fluorescent sample, where the lifetime of a fluorophore signal is used to create the image. This method reduces the effect of photon scattering in thick samples and also avoids sample bleaching and photo-induced toxicity. Investigated fluorophores can be naturally present in the cell (e.g. NAD(P)H, which is indicative of cellular metabolism), or fluorophores that we can introduce externally to understand cell pathways and signaling. Link to PubMed: http://www.ncbi.nlm.nih.gov/pubmed/?term=monaghan+AND+(pandit+OR+Walles+OR+schenke-layland) Link to Google Scholar: https://scholar.google.com/citations?user=X1mgIbEAAAAJ&hl=en&oi=sra

Keywords

2ND HARMONIC GENERATION; 3D Imaging Analysis; Bioengineering and radiologic imaging; BIOMATERIALS; COLLAGEN; CONFOCAL IMAGING; Confocal photoluminescence imaging; DRUG TARGETING; DRUG-DELIVERY SYSTEM; EXTRACELLULAR MATRIX (ECM); GENE SILENCING; GENE-THERAPY

Recognition

Awards and Honours

European Doctoral Award, Issued by the European Society of Biomaterials 2015

Deutscher Akademischer Austausch Dienst, Short Term Travel Award to conduct research in University Hospital Tübingen 2012

EMBO Short Term Travel Award to conduct research in Fraunhofer IGB Stuttgart 2011

Roche Best Poster Award, NCBES Research day 2008

NUI Galway College of Engineering and Informatics Research Fellow 2007

University Scholar (Based on end of term results) NUI Galway 2005

Memberships

Royal Academy of Medicine in Ireland (RAMI)- Bioengineering Section 2017 – Present

MBI- Matrix Biology Ireland 2016 – Present

ESB- European Society for Biomaterials 2010 – Present

TERMIS - Tissue Engineering and Regenerative Medicine Society 2009 – Present

DGMB-German Matrix Biology Society 2013 – 2016