Phase transformations

Fe₃C (cementite)

\[\gamma \] (austenite)

\[\gamma + L \]

\[L + Fe₃C \]

\[\gamma + Fe₃C \]

\[\alpha + Fe₃C \]

\[T(°C) \]

\[C_o, \text{ wt}\% \text{ C} \]

1148°C

727°C
Eutectic, Eutectoid and Peritectic Reactions

Eutectic Reaction

\[Liquid \Leftrightarrow Solid \ phrase(1) + Solid \ phrase \ (2) \]

Eutectoid reaction

\[Solid \ phrase \ (1) \Leftrightarrow Solid \ phrase \ (2) + Solid \ phrase \ (3) \]

Peritectic Reaction

\[Liquid \ phrase \ (1) + Solid \ phrase \ (2) \Leftrightarrow Solid \ phrase \ (3) \]
Phase Transformations

Nucleation

- nuclei act as seed points to grow crystals
- for nucleus to form
 - rate of addition of atoms > rate of loss
- once nucleated, growth \rightarrow equilibrium

Driving force to nucleate increases as we increase ΔT

- supercooling (eutectic, eutectoid)
- superheating (peritectic)

Small supercooling \rightarrow few nuclei - large crystals
Large supercooling \rightarrow rapid nucleation - many nuclei, small crystals
Solidification: Nucleation Processes

- Homogeneous nucleation
 - nuclei form in the bulk of liquid metal
 - requires supercooling (typically 80-300 °C max)

- Heterogeneous nucleation
 - much easier since stable “nucleus” is already present
 - Could be wall of mold or impurities in the liquid phase

Think of why you’d been asked never to put a used spoon back into a honey jar…

- allows solidification with only 0.1-10 °C supercooling
- concentration drive is also possible and often used!
Rate of Phase Transformation

Avrami (JMAK) rate equation:

\[y = 1 - \exp(-kt^n) \]

- \(k \) & \(n \) are constants for specific system – \(n \) is roughly related to the growth front dimensionality + 1

The rate is:

\[r = \frac{1}{t_{0.5}} \]

\(JMAK \) – Johnson, Mehl, Avrami, Kolmogorov
In general, rate increases as $T \uparrow$

$$r = \frac{1}{t_{0.5}} = A \ e^{-Q/RT}$$

- R = gas constant
- T = temperature (K)
- A = pre-exponential factor
- Q = activation energy

• r often small: equilibrium not possible!
Eutectoid Transformation Rate

- Growth of pearlite from austenite:
 - Austenite (γ) grain boundary
 - Cementite (Fe_3C)
 - Ferrite (α)
 - Pearlite growth direction

- Eutectoid transformation rate increases with ΔT.

Course pearlite \rightarrow formed at higher T - softer
Fine pearlite \rightarrow formed at low T - harder
• Reaction rate is a result of nucleation and growth of crystals.

- Nucleation rate increases with ΔT
- Growth rate increases with T

% Pearlite

<table>
<thead>
<tr>
<th>% Pearlite</th>
<th>Nucleation regime</th>
<th>Growth regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\log (\text{time})$

- Examples:

 - T just below T_E:
 - Nucleation rate low
 - Growth rate high

 - T moderately below T_E:
 - Nucleation rate med
 - Growth rate med

 - T way below T_E:
 - Nucleation rate high
 - Growth rate low

pearlite colony
Transformations & Supercooling

Eutectoid transf. (Fe-C System):
Can make it occur at:
...727°C (cool it slowly)
...below 727°C (“supercool” it!)

\[
\begin{align*}
\gamma &\Rightarrow \alpha + Fe_3C \\
0.76 \text{ wt\% C} &\quad 6.7 \text{ wt\% C} \\
0.022 \text{ wt\% C} &
\end{align*}
\]
Isothermal Transformation Diagrams

- Fe-C system, $C_o = 0.76$ wt% C
- Transformation at $T = 675^\circ C$.

![Graph showing isothermal transformation at 675°C](image-url)
Effect of Cooling History in Fe-C System

- Eutectoid composition, $C_o = 0.76$ wt% C
- Begin at $T > 727^\circ$C
- Rapidly cool to 625°C and hold isothermally.
Transformations with Proeutectoid Materials

$C_o = 1.13 \text{ wt}\% \text{ C}$

Hypereutectoid composition – proeutectoid cementite
Non-Equilibrium Transformation

Products: Fe-C

- Bainite: (Davenport & Bain)
 - α strips with long needles of Fe$_3$C
 - diffusion controlled.
- Isothermal Transf. Diagram

Diagram

- Fe$_3$C (cementite)
- α (ferrite)
- 100% pearlite
- 100% bainite
- pearlite/bainite boundary

Axes

- T ($^\circ$C)
- time (s)

Legend

- A
- B
- 100% pearlite
- 100% bainite

Comparisons

- 5 μm
- 120 μm

Note: cf: Pearlite
Spheroidite: Fe-C System

- α + grains with spherical Fe$_3$C
- diffusion dependent.
- heat bainite or pearlite for long times (e.g. 18 h at 700°C)
- reduces interfacial area (driving force)
Martensite: Fe-C System

- Martensite: (Martens)
 - γ (FCC) to Martensite (BCT)
 (involves single atom jumps)

- Isothermal Transf. Diagram

\[T^\circ C \]

- γ to M transformation..
 - is rapid!
 - % transf. depends on T only.
 - can be stress-induced
Martensite Formation

\[\gamma \text{ (FCC)} \xrightarrow{\text{quench}} M \text{ (BCT)} \xrightarrow{\text{slow cooling}} \alpha \text{ (BCC)} + Fe_3C \]

M = martensite is body centered tetragonal (BCT)

Diffusionless transformation

BCT if \(C > 0.15 \text{ wt}\% \)

BCT \(\rightarrow \) few slip planes \(\rightarrow \) hard, brittle
Phase Transformations of Alloys

Effect of adding other elements
Change transition temp.

Cr, Ni, Mo, Si, Mn
retard

γ → α + Fe₃C
transformation
On the isothermal transformation diagram for 0.45 wt% C Fe-C alloy, sketch and label the time-temperature paths to produce the following microstructures:

a) 42 % proeutectoid ferrite and 58 % coarse pearlite
b) 50 % fine pearlite and 50 % bainite
c) 100 % martensite
d) 50 % martensite and 50 % austenite
Example Problem for $C_0 = 0.45$ wt%

a) 42 % proeutectoid ferrite and 58 % coarse pearlite (amounts determined by phase diagram)

first make ferrite

then pearlite

coarse pearlite \therefore higher T
Example Problem for $C_o = 0.45$ wt%

a. the amount of pearlite and proeutectoid ferrite (α)

note: amount of pearlite = amount of γ just above T_E

$C_o = 0.45$ wt% C
$C_\alpha = 0.022$ wt% C
$C_{\text{pearlite}} = C_\gamma = 0.76$ wt% C

$$\frac{\gamma}{\gamma + \alpha} = \frac{C_o - C_\alpha}{C_\gamma - C_\alpha} \times 100 = 57.9\%$$

pearlite = 58 %
proeutectoid $\alpha = 42 \%$
Example Problem for $C_o = 0.45$ wt%

b) 50% fine pearlite and 50% bainite

First make pearlite then bainite

Fine pearlite \therefore lower T
Example Problem for $C_o = 0.45$ wt%

c) 100 % martensite – quench = rapid cool

d) 50 % martensite and 50 % austenite
Mechanical Prop: Fe-C System (1)

- Effect of wt% C
 - More wt% C: TS and YS increase, %EL decreases.

- Hypoeutectoid (C₀ < 0.76 wt% C)
 - Pearlite (med)
 - Ferrite (soft)

- Hypereutectoid (C₀ > 0.76 wt% C)
 - Pearlite (med)
 - Cementite (hard)

- Graphs showing:
 - YS, TS, hardness vs. wt% C
 - %EL, Impact energy (Izod, ft-lb) vs. wt% C

- More wt% C: TS and YS increase, %EL decreases.
Mechanical Prop: Fe-C System (2)

- Fine vs coarse pearlite vs spheroidite

- Hardness: fine > coarse > spheroidite
- %RA: fine < coarse < spheroidite
Mechanical Prop: Fe-C System (3)

- Fine Pearlite vs Martensite:

- Hardness: fine pearlite \ll martensite.
Tempering Martensite

- reduces brittleness of martensite,
- reduces internal stress caused by quenching.

- produces extremely small Fe₃C particles surrounded by α.
- decreases TS, YS but increases %RA
Summary: Processing Options

Austenite (γ)

- slow cool
 - Pearlite ($\alpha + \text{Fe}_3\text{C}$ layers + a proeutectoid phase)
- moderate cool
 - Bainite ($\alpha + \text{Fe}_3\text{C}$ plates/needles)
- rapid quench
 - Martensite (BCT phase diffusionless transformation)

General Trends

- Strength
 - Martensite
 - Tempered Martensite
- Ductility
 - T Martensite
 - Bainite
 - Fine pearlite
 - Coarse pearlite
 - Spheroidite