PY2N20
Material Properties and Phase Diagrams
Lecture 5

P. Stamenov, PhD
School of Physics, TCD
Phase Diagrams - Introduction

• How much can be done with pure elemental compounds?

• How many combinations of elements could be imagined? – 2^{100} ?

• How many of these combinations will have the structure (crystallographic, nanoscale, microscale, etc.) of the end members?

• How is mixing them going to affect the resulting mechanical, electronic and other physical and chemical properties?

• Can the properties of the end members be improved on?
When we combine two or more constituents (elements)...
what equilibrium state do we get?

In particular, if we specify... c, p, T, but also H, E
(all are intensive thermodynamic parameters)
- composition (e.g., wt% Cu - wt% Ni), and
- temperature (T)
then...

How many phases do we get?
What is the composition of each phase?
How much of each phase do we get?

Does this phase segregation really occur for $\text{Cu}_{1-x}\text{Ni}_x$?
Introduction

- **Solutions** – solid solutions, single phase
- **Mixtures** – more than one phase

Solubility Limit:
Max concentration for which only a single phase solution occurs.

Question: What is the solubility limit at 20°C?

Answer: 65 wt% sugar.
If \(C_0 < 65 \text{ wt\% sugar} \): syrup
If \(C_0 > 65 \text{ wt\% sugar} \): syrup + sugar.
Components and Phases

• **Components:**
 The elements or compounds which are present in the mixture (e.g., Al and Cu)

• **Phases:**
 The physically and chemically distinct material regions that result (e.g., α and β).
Effect of T & Composition (C_o)

- Changing T can change # of phases: path A to B.
- Changing C_o can change # of phases: path B to D.
Phase Equilibria

Simple solution system (e.g., Ni-Cu solution)

<table>
<thead>
<tr>
<th></th>
<th>Crystal Structure</th>
<th>Electroneg.</th>
<th>r (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>FCC</td>
<td>1.9</td>
<td>0.1246</td>
</tr>
<tr>
<td>Cu</td>
<td>FCC</td>
<td>1.8</td>
<td>0.1278</td>
</tr>
</tbody>
</table>

- Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility.

- Ni and Cu are totally miscible in all proportions. Hence, the answer to the earlier question…is No…
Phase Diagrams

- Indicate phases as function of T, C_o, and P.
- For this course:
 - binary systems: just 2 components.
 - independent variables: T and C_o ($P = 1$ atm is almost always used).

Phase Diagram for Cu-Ni system

- 2 phases:
 - L (liquid)
 - α (FCC solid solution)

- 3 phase fields:
 - L
 - $L + \alpha$
 - α

wt% Ni

$T(°C)$
Phase Diagrams: Number and types of phases

- Rule 1: If we know T and C_0, then we know:
 - the number and types of phases present.

- Examples:
 - $A(1100^\circ C, 60)$: 1 phase: α
 - $B(1250^\circ C, 35)$: 2 phases: $L + \alpha$
Composition of phases

- Rule 2: If we know T and C_O, then we know:
 - the composition of each phase.

Examples:

- $C_O = 35$ wt% Ni

At $T_A = 1320^\circ$C:
 - Only Liquid (L)
 - $C_L = C_O$ (= 35 wt% Ni)

At $T_D = 1190^\circ$C:
 - Only Solid (α)
 - $C_\alpha = C_O$ (= 35 wt% Ni)

At $T_B = 1250^\circ$C:
 - Both α and L
 - $C_L = C_{\text{liquidus}}$ (= 32 wt% Ni here)
 - $C_\alpha = C_{\text{solidus}}$ (= 43 wt% Ni here)
Rule 3: If we know T and C_0, then we know:
- the amount of each phase (given in wt%), via the so-called: ‘centre of gravity principle’ or the ‘lever rule’...

Examples:

$C_0 = 35\text{ wt\% Ni}$

At T_A: Only Liquid (L)
- $W_L = 100\text{ wt\%}$, $W_\alpha = 0$

At T_D: Only Solid (α)
- $W_L = 0$, $W_\alpha = 100\text{ wt\%}$

At T_B: Both α and L

\[
W_L = \frac{S}{R+S} = \frac{43-35}{43-32} = 73\text{ wt\%}
\]

\[
W_\alpha = \frac{R}{R+S} = 27\text{ wt\%}
\]
The Lever Rule

- Tie line – connects the phases in equilibrium with each other - essentially an isotherm

![Diagram showing tie lines and lever rule](image)

- How much of each phase?
 - Think of it as a lever

\[W_L = \frac{M_L}{M_L + M_\alpha} = \frac{S}{R + S} = \frac{C_\alpha - C_0}{C_\alpha - C_L} \]

\[W_\alpha = \frac{R}{R + S} = \frac{C_0 - C_L}{C_\alpha - C_L} \]
- Phase diagram:
 Cu-Ni system.
- System is:
 - binary
 i.e., 2 components: Cu and Ni.
 - isomorphous
 i.e., complete solubility of one component in another; α phase field extends from 0 to 100 wt% Ni.
- Consider $C_0 = 35$ wt%Ni.

Cooling in the Cu-Ni Binary System

![Diagram of Cu-Ni phase diagram](image)
Cored vs Equilibrium Phases

- C_α changes as we solidify.
- Cu-Ni case: First α to solidify has $C_\alpha = 46$ wt% Ni. Last α to solidify has $C_\alpha = 35$ wt% Ni.

- Fast rate of cooling: Cored structure
- Slow rate of cooling: Equilibrium structure
Mechanical Properties: Cu-Ni System

- Effect of solid solution strengthening on:
 - Tensile strength (TS)
 - Ductility (%EL, %AR)

![Graph showing tensile strength and elongation as functions of composition.](image)

- Maximum as a function of C_O
- Minimum as a function of C_O
Binary Eutectic Systems

ευτηκτικός - from Greek ‘easiest to melt’
Binary-Eutectic Systems

Cu-Ag system

- 3 single phase regions
 \((L, \alpha, \beta)\)
- Limited solubility:
 \(\alpha\): mostly Cu
 \(\beta\): mostly Ag
- \(T_E\): No liquid below \(T_E\)
- \(C_E\): Composition with min. melting \(T_E\)
- Eutectic transition
 \[L(C_E) \leftrightarrow \alpha(C_{\alpha E}) + \beta(C_{\beta E}) \]
Pb-Sn Eutectic System (1)

- For a 40 wt% Sn-60 wt% Pb alloy at 150°C, find...
 - the phases present:
 - compositions of phases:
 \[C_O = 40 \text{ wt\% Sn} \]
 \[C_\alpha = 11 \text{ wt\% Sn} \]
 \[C_\beta = 99 \text{ wt\% Sn} \]
 - the relative amount of each phase:
 \[W_\alpha = \frac{S}{R+S} = \frac{C_\beta - C_O}{C_\beta - C_\alpha} \]
 \[= \frac{99 - 40}{99 - 11} = \frac{59}{88} = 67 \text{ wt\%} \]
 \[W_\beta = \frac{R}{R+S} = \frac{C_O - C_\alpha}{C_\beta - C_\alpha} \]
 \[= \frac{40 - 11}{99 - 11} = \frac{29}{88} = 33 \text{ wt\%} \]

Adapted from Fig. 9.8, Callister 7e.
Pb-Sn Eutectic System (2)

- For a 40 wt% Sn-60 wt% Pb alloy at 220°C, find...
 - the phases present: $\alpha + L$
 - compositions of phases:

 $C_O = 40$ wt% Sn
 $C_\alpha = 17$ wt% Sn
 $C_L = 46$ wt% Sn

 - the relative amount of each phase:

 $W_\alpha = \frac{C_L - C_O}{C_L - C_\alpha} = \frac{46 - 40}{46 - 17} = \frac{6}{29} = 21$ wt%

 $W_L = \frac{C_O - C_\alpha}{C_L - C_\alpha} = \frac{23}{29} = 79$ wt%
• $C_o < 2 \text{ wt}\% \text{ Sn}$
• Result:
 - at extreme ends
 - polycrystal of α grains
 i.e., only one solid phase.
Microstructures in Eutectic Systems: II

- 2 wt% Sn < C_o < 18.3 wt% Sn
- Result:
 - Initially liquid + α
 - then α alone
 - finally two phases
 - α polycrystal
 - fine β-phase inclusions

![Pb-Sn phase diagram](image)
Microstructures in Eutectic Systems: III

- $C_o = C_E$
- Result: Eutectic microstructure (lamellar structure) - alternating layers (lamellae) of α and β crystals.

Micrograph of Pb-Sn eutectic microstructure

Adapted from Fig. 9.14, Callister 7e.
Lamellar Eutectic Structure

Other possible eutectic structures are: rod-like, globular and acicular.
Microstructures in Eutectic Systems: IV

- 18.3 wt% Sn < C_0 < 61.9 wt% Sn
- Result: α crystals and an eutectic microstructure

![Pb-Sn system diagram]

- Just above T_E:
 $C_\alpha = 18.3$ wt% Sn
 $C_L = 61.9$ wt% Sn
 \[W_\alpha = \frac{S}{R + S} = 50 \text{ wt\%} \]
 \[W_L = (1 - W_\alpha) = 50 \text{ wt\%} \]

- Just below T_E:
 $C_\alpha = 18.3$ wt% Sn
 $C_\beta = 97.8$ wt% Sn
 \[W_\alpha = \frac{S}{R + S} = 73 \text{ wt\%} \]
 \[W_\beta = 27 \text{ wt\%} \]