PY2N20
Material Properties and Phase Diagrams
Lecture 1

P. Stamenov, PhD
School of Physics, TCD
Text Books

- *Materials Science & Engineering: An Introduction*
 William D *Callister*, Jr.
 S-LEN 620.11 53*5;1 10

- *Introduction to Materials Science for Engineers*
 James F *Shackelford*
 620.11 M56*5
Handouts, Notes, Tutorials, etc.

- Handouts will be distributed at each of the lectures
- After the lectures electronic copies of the corresponding handouts will be uploaded at:
 http://physics.tcd.ie/people/Plamen.Stamenov/Courses/
- The examination questions are already fixed
- Voluntary tutorials to be organised...
Historical Perspective

- Metals, Polymers, Composites, Ceramics, Glasses

- Metals
 - Glassy metals
 - Al-lithium alloys
 - Dual phase steels
 - Microalloyed steels
 - New super alloys
 - Development slow: mostly quality control and processing

- Polymers, elastomers
 - High modulus polymers
 - Ceramic composites
 - Metal-matrix composites

- Composites
 - High temperature polymers
 - Titanium, Zirconium, Etc.
 - Alloys

- Ceramics, glasses
 - Refractories
 - Portland Cement
 - Fused Silica
 - Cements
 - Pyro-Ceramics
 - Tough engineering ceramics
 - (Al₂O₃, Si₃N₄, PSZ etc.)
Types of Materials

- Metals
- Ceramics
- Semiconductors
- Polymers
- Composites
Metals

Most elemental compounds are metals – rules of QM!
Ceramics

- Based on oxides, sulphides, nitrides, but not only!
Semiconductors

- Group IV (elemental), III-V’s, II-VI’s, others...
- Mainly organics, but not only...
What determines a material’s performance?

Properties ➔ Performance
Properties of Materials

- Mechanical
- Physical
 - Electrical
 - Thermal
 - Magnetic
 - Optical
 - Deteriorative
- Chemical
- Others
What determines a material’s performance?

Structure ➔ Properties ➔ Performance
What do we mean by structure?

- Macroscopic
- Microscopic
- Mesoscopic
- Nanoscopic
- Atomic level
Bonding

- Metallic Bonding
 - Conductivity
 - Ductility
 - Heat capacity
 - Reactivity
Bonding

- Covalent Bonding
 - Toughness
 - Brittleness
 - Insulation
 - Refractivity
 - Inactivity
Bonding

- Ionic Bonding
 - Brittleness
 - Insulation
 - Reactivity
Bonding

- Van der Waals Bonding
 - Weakness
 - Insulation
 - Inactivity
Types of bonding in engineering materials

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Bonding Character</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
<td>Metallic</td>
<td>Iron, Cu</td>
</tr>
<tr>
<td>Ceramics and Glasses</td>
<td>Ionic/covalent</td>
<td>Silica (crystalline and amorphous)</td>
</tr>
<tr>
<td>Polymers</td>
<td>Covalent and secondary</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>Covalent or ionic/covalent</td>
<td>Si, CdS</td>
</tr>
</tbody>
</table>
Representation of Crystal Structures

- Atomic hard sphere model
- Packing density
- Lattices
- Unit cells
- Coordination spheres and polyhedra
- Point groups (of symmetry)
- Space groups
- ‘Colour’ groups
7 Crystal Systems
14 Crystal (Bravais) Lattices

CUBIC
\[a = b = c \]
\[\alpha = \beta = \gamma = 90^\circ \]

TETRAGONAL
\[a = b \neq c \]
\[\alpha = \beta = \gamma = 90^\circ \]

ORTHORHOMBIC
\[a \neq b \neq c \]
\[\alpha = \beta = \gamma = 90^\circ \]

HEXAGONAL
\[a = b \neq c \]
\[\alpha = \beta = 90^\circ \]
\[\gamma = 120^\circ \]

MONOCLINIC
\[a \neq b \neq c \]
\[\alpha = \gamma = 90^\circ \]
\[\beta \neq 120^\circ \]

TRICLINIC
\[a \neq b \neq c \]
\[\alpha \neq \beta \neq \gamma \neq 90^\circ \]

4 Types of Unit Cell
\[P = \text{Primitive} \]
\[I = \text{Body-Centred} \]
\[F = \text{Face-Centred} \]
\[C = \text{Side-Centred} \]

7 Crystal Classes → 14 Bravais Lattices
Atomic Packing Factor

\[APF = \frac{\text{Volume of atoms in a unit cell}}{\text{Total volume of unit cell}} \]

Homework

Calculate the APF for

- (Primitive) cubic
 - BCC
 - FCC
Crytallographic Points, Directions and Planes

- Set up right-handed set of axes x, y, and z
 - x, y, and z along the edges of a unit cell
 - Origin at a lattice point
 - x, y, and z not always mutually perpendicular!
 - a, b, and c are the unit length of the three corresponding unit cell edges

- Labelling conventions

<table>
<thead>
<tr>
<th>Points</th>
<th>Directions</th>
<th>Planes</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>[110]</td>
<td>(110)</td>
</tr>
<tr>
<td>111</td>
<td>[111]</td>
<td>(100)</td>
</tr>
</tbody>
</table>

Families

- {001}
- <011>
What determines a material’s performance?

Basic aim of this short course

- Understand how processing affects the
 - Structure
 - Properties
 - Performance

of materials

- Concentrate (focus and emphasis) on metals, semiconductors, oxides...