Reimbedding and the Schoenflies Conjecture

Dublin

August 2015
Setting: \(S^3 \cong_{PL/DIFF} P \subset S^4 \) divides \(S^4 \) into \(X \) and \(Y \).

Conjecture (Schoenflies Conjecture)

\[X \text{ and } Y \cong_{PL/DIFF} D^4. \]

Observations:

- \(X \cong_{PL/DIFF} D^4 \iff Y \cong_{PL/DIFF} D^4 \).
- Handles of \(P \) are level and appear with non-decreasing index.
- A handle into \(X \) only affects topology of \(Y \) (and vice versa).
- Sample lemma: If all all 0,1-handles on same side, then \(X \) and \(Y \cong_{PL/DIFF} D^4 \).
P in Kearton-Lickorish position $\implies S_0^3 \cap P$ Heegaard splits P.

The genus of the embedding is the genus of this Heegaard surface.
Example: Schoenflies Conjecture obviously true for genus 1:
If 1-handle knotted, where can 2-handle go?

This would give non-separating 2-sphere \Rightarrow not S^3.
If 1-handle **unknotted**, where can 2-handle go?

This leaves X standard. (All handles lie in X.)
Some philosophical observations/questions:

- Argument hardest when $S_0^3 \cap P$ Heegaard splits S_0^3 also.

- Agol-Freedman: if allowed to stabilize (increase genus) then any embedding with one max can be isotoped to Heegaard embedding: every generic $S_t^3 \cap P$ Heegaard splits S_t^3.

- So focus on special case of Heegaard embeddings of P?
Suppose $P \subset S^4$ is genus 2 embedding.

Possibility 1: One 0-handle, two 1-handles, all lying in X, say. Then all handles on same side \implies done.

Possibility 2: One 0-handle, two 1-handles, one each in X and Y:

Generic case:

![Generic case diagram]

Solution: where’s the next 2-handle?
Special case for second 1-handle:

Many possibilities for next 2-handle...

Regardless, know X will have only one 1-handle and one 2-handle (as will Y).
Lucky break - can invoke Gabai’s celebrated Property R:

Theorem (Property R Gabai 1987)

If surgery on knot $K \subset S^3$ gives $S^1 \times S^2$, then K is the unknot.

Relevance: Consider trace of this surgery, i.e. associated 4-manifold cobordism between S^3 and $S^1 \times S^2$.

Corollary

Suppose U^4 is homology ball, with $\partial U \cong S^3$. If U has a single 1-handle and a single 2-handle, then $U \cong B^4$.
Proof: \((0\text{-handle } \cup 1\text{-handle})\) is \(S^1 \times D^3\), so boundary is \(S^1 \times S^2\). Adding 2-handle surgeries boundary to \(S^3\).

In reverse direction: have surgered \(S^3\) to get \(S^1 \times S^2\). Gabai says \(K \subset S^3\) is just \(S^1 \subset S^3\).

More general point: big 3-manifold theorem is useful for this 4-dimensional question.
Side observation: may as well assume first 1-handle is unknotted, by reimbedding:

- All 2-handles will be trapped in knotted torus, so reimbedding extends thru 2-handles.
- Reimbedding changes X (becomes X' say) but Y unchanged.
- If can show $X' \cong D^4$ then: $\implies Y \cong D^4 \implies X \cong D^4$.
- After the reimbedding, $S_0^2 \cap P$ Heegaard splits S_0^2.
Possibility 3: Two 0-handles, three 1-handles, one connecting:

Use reimbedding trick.
Not a Heegaard surface, but at least one side Y is a handlebody.

For genus two, reimbedding always can make one side a handlebody; here's why:

- $S_0^t \cap P$ compresses in either X or Y, say Y
- If compresses completely $\implies Y$ a handlebody.
- If doesn't compress then get knotted companion tori, which describe reimbedding.
Let

- $X_0 = X \cap S^3_0$
- $X_- = X \cap S^3 \times [-1, 0]$
- $X_+ = X \cap S^3 \times [0, 1]$

Similarly denote Y_0, Y_-, Y_+, with $Y_0 = Y_- \cap Y_+$
Is it possible to reimbed Y so X_0 is a handlebody (or vice versa)? Would such a reimbedding be useful?

Reimbedding possibility: Observation 1

Theorem (Fox 1948)

Any compact connected 3-dimensional submanifold of S^3 can be re-imbedded as the complement of handlebodies.

Hence always Y_0 can be reimbedded so X_0 becomes a handlebody.

But how to do this so that $Y_t, t \neq 0$ can also be reimbedded? Need reimbedding to extend over 2-handles. (Companion tori guaranteed this in genus 2 case above.)
Observation 2:
Suffices to construct a sequence of reimbeddings:

1. Reimbed Y so X_0 is more compressible than it was
2. Reimbed new X so Y_0 is more compressible than it was
3. Reimbed new Y...

If eventually get X_0 (or Y_0) a handlebody, and if this property can be used to show X or Y is now D^4, then done.

Observation 3:
Deep theorems in 3-manifold theory (using Gabai’s sutured manifold theory) shows that reimbedding sequence to handlebody works in genus 3 case.
Observation 4:

Theorem (Agol-Freedman 2013)

*If P has single maximum then can isotope \(P \subset S^4 \) so that each \(X_t \) and \(Y_t \) are *both* handlebodies. (Does not require \(P = S^3 \).)*

Each \(P_t \) is Heegaard surface in \(S^3_t \), so it’s a **Heegaard embedding**. (This may have been known to Eaton.)

Sketch:

- For knotted 1-handle in \(Y_t \) (say), introduce extra 1-handles (’intervention arcs’ = IA) so \(Y_t \) remains handlebody.
- With even more IA’s, the IA’s can be added or deleted one-by-one.
- Delete IA’s by handle-cancellation. Then result isotopic (not level-preserving) with original
Toy example: $X = S^1 \times D^3$, $Y = D^2 \times S^2$, each X_t a handlebody

Clearly isotopic if, near end, just add canceling 1 & 2-handle
Introduce 1-handle earlier

Now each Y_t also a handlebody.
Problem? Requires massive stabilization of the embedding - no control on genus.
Another source of intervention arcs: Handle-slides in Heegaard theory... are replaced with arc additions and deletions: