CE7S03: S3 – Wind and Earthquake Engineering [5 credits]

Module Co-ordinator(s): Prof. Brian Broderick (bbrodrck@tcd.ie)

Lecturer(s): Prof. Biswajit Basu

Module organisation
Department of Civil, Structural and Environmental Engineering

Module description, aims and contribution to programme
This module is suitable for students with a good undergraduate knowledge of structural engineering. It is intended as an introduction to the analysis and design of buildings under seismic and wind loading conditions and contains a review of the relevant principles and methods of structural analysis.

Learning outcomes
On successful completion of this course, students will be able to:
1. Describe the origin of seismic loads and their effect on building structures;
2. Calculate the response of a SDOF system to earthquake ground motion;
3. Calculate response spectra from earthquake ground motion records and wind loads;
4. Draw design spectra for linear and nonlinear structures;
5. Describe the main forms for earthquake resistant structures;
6. Apply the provisions of Eurocode 8 in structural design;
7. Design structures for wind load;

Module content
2. Engineering seismology and earthquake ground motion.
3. Earthquake response of SDOF systems: response and design spectra, linear and nonlinear response.
5. Relevant provisions of Eurocode 8.

Teaching strategies
Students will attend lectures and complete classroom-based tutorials. They will also independently complete larger pieces of coursework, including hand and computer-based calculations using the principles and methods introduced in class. Independent background reading and acquisition of web-based materials will also be required.
Student questionnaires will be employed to develop the course content and coursework activities.

Assessment
(a) Summative – Examination 70%; Coursework 30%.
(b) Formative – Classroom assessment of independent reading and learning.

Required textbook
Any textbook on structural dynamics. Clough and Penzien is recommended. Web resources to be identified in class.

Further information
School of Engineering weblink.