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Topic 6: Investment With Adjustment Costs

Over the past few weeks we have seen a number examples of forward-looking first-order

stochastic difference equations of the form

yt = axt + bEtyt+1 (1)

The solution that we have derived has been of the form

yt = a
∞∑

k=0

bkEtxt+k (2)

so that yt is a completely forward-looking variable. Note that this means that yt does not

depend at all on its own past values. We will now turn to an example which does not

correspond to this case.

Specifically, we will look at a theory of the determination of the capital stock (and thus

investment). Empirical studies show that the capital stock does not change very much from

period to period. Economists usually rationalise this by assuming that there are some form

of “adjustment costs” that prevent firms from changing their capital stock too quickly. In

this handout, we will consider a model of investment with adjustment costs, show that it

implies a second-order stochastic difference equation, and examine the methods used to

solve these types of equations.

The Firm’s Problem

Consider now the following model of firm investment. We will assume that, each period,

there is a level of the log of the capital stock, k∗t , that the firm would choose if there were no

adjustment costs. We will call this the frictionless optimal capital stock. With adjustment

costs the firm has to choose a planned sequence of capital stocks Et {kt,kt+1,kt+2, .....}
minimise the following “loss function”

L (kt, kt+1, tt+2, ...) = Et

[ ∞∑
m=0

θm
{(

kt+m − k∗t+m

)2 + α (kt+m − kt+m−1)
2
}]

(3)

This might look a bit intimidating but it’s not too complicated:

• Firstly, for each period, t + m, there is a term
(
kt+m − k∗t+m

)2 that describes the

loss in profits suffered by the firm from not having its capital stock equated with the

frictionless optimal level.
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• Secondly, there is a term α (kt+m − kt+m−1) which describes the concept of adjustment

costs formally: Ceteris paribus changes in the capital stock have a negative effect on

firm profits.

• The reason we are assuming that kt is actually the log of the stock, as opposed to

the stock itself, is that this way these losses can be viewed in percentage terms: It

is the percentage gap between capital and its frictionless optimal that matters and

also the percentage change in the stock. This makes more sense than levels of these

gaps mattering because economic growth will make levels of these variables grow over

time.

• Finally, the parameter θ is a discount rate less than one, which tells us that firms care

more about profits today than profits tomorrow.

This loss function can be re-written as

L (kt, kt+1, tt+2, ...) = (kt − k∗t )
2 + α (kt − kt−1)

2 + θEt

[(
kt+1 − k∗t+1

)2 + α (kt+1 − kt)
2
]

+θ2Et

[(
kt+2 − k∗t+2

)2 + α (kt+2 − kt+1)
2
]
+ .... (4)

An optimal plan is arrived at by differentiating this with respect to each of the capital stock

terms kt+m and setting these derivatives equal to zero. Consider first differentiating with

respect to kt. This gives

2 (kt − k∗t ) + 2α (kt − kt−1)− 2αθEt (kt+1 − kt) = 0 (5)

Again, try differentiating with respect to kt+1. This gives

Et

[
2θ

(
kt+1 − k∗t+1

)
+ 2αθ (kt+1 − kt)− 2αθ2 (kt+2 − kt+1)

]
= 0 (6)

This is the exact same as the previous first-order condition, only shifted forward one period.

In fact one can show that all of the FOCs describing the optimal dynamics of the capital

are consistent with the same second-order stochastic difference equation

Et [(kt − k∗t ) + α (kt − kt−1)− αθ (kt+1 − kt)] = 0 (7)

Drawing terms together, this gives

−αθEtkt+1 + (1 + α + αθ) kt − αkt−1 = k∗t (8)
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which can be re-written as

Etkt+1 −
(

1 +
1
θ

+
1
αθ

)
kt +

1
θ
kt−1 = − 1

αθ
k∗t (9)

Because the maximum difference between time subscripts is two, this is a second-order

stochastic difference equation. There are two different methods that are commonly used

to solve equations of this form. I will discuss the so-called factorization method. For

completeness, I have also attached the derivation of the solution using the other method

known as the method of undetermined coefficients, but you can ignore this if you wish.

Lag Operators

The factorization method makes use what are known as lag and forward operators. These

are commonly used in calculations relating to time series, and they work as follows. The

lag operator turns a variable dated time t into a variable dated time t− 1:

Lyt = yt−1 (10)

Lag operators can be multiplied and added just like normal variables. So, for instance, one

can write

Lkyt = yt−k (11)

The forward operator has the reverse effect of the lag operator

F kyt = yt+k (12)

Lag and forward operators also obey a form of the geometric sum formula. Recall that for

−1 < β < 1, we have
∞∑

m=0

βm =
1

1− β
(13)

Recall also that if −1 < β < 1 and

yt = βEtyt+1 + xt (14)

then the solution is

yt =
∞∑

m=0

βmEtxt+k (15)

Equation (14) can be re-written as

yt = Et

[
1

1− βF
xt

]
(16)
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So equation (15) means that
1

1− βF
=

∞∑
m=0

βmFm (17)

The same applies for lag operators

1
1− βL

=
∞∑

m=0

βmLm (18)

To verify that this is the case, note that if

yt = βyt−1 + xt (19)

then one can apply repeated substitution to re-write this as

yt = xt + βxt−1 + β2xt−2 + β3xt−3 + ..... (20)

Armed with this knowledge of lag and forward operators we can solve the second-order

stochastic difference equation using the factorization method.

Solution via Factorization

This method first re-writes equation (9) in terms of lag and forward operators. Written

this way it is

Et

[(
F −

(
1 +

1
θ

+
1
αθ

)
+

1
θ
L

)
kt

]
= − 1

αθ
k∗t (21)

Next, the method re-expresses the left-hand-side in terms of a quadratic equation in F

multiplied by L:

Et

[(
F 2 −

(
1 +

1
θ

+
1
αθ

)
F +

1
θ

)
Lkt

]
= − 1

αθ
k∗t (22)

Now, you may recall that polynominals of the form

g(x) = x2 + bx + c (23)

can be re-written in terms of their roots as

g(x) = (x− λ1) (x− λ2) (24)

where

λ1 + λ2 = −b (25)

λ1λ2 = c (26)
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In this case, one can show that the polynomial

x2 −
(

1 +
1
θ

+
1
αθ

)
x +

1
θ

(27)

has two roots such that one root (λ) is between zero and one while the other equals 1
θλ .

This means that the optimality condition for the capital stock can be re-expressed as

Et

[
(F − λ)

(
F − 1

θλ

)
Lkt

]
= − 1

αθ
k∗t (28)

Dividing across by
(
F − 1

θλ

)
, this becomes

Et [(F − λ) Lkt] = − 1
αθ

Et

[
1

F − 1
θλ

k∗t

]
(29)

Now we can use the properties of lag operators just derived to show that

1
F − 1

θλ

=
−θλ

1− θλF
= −θλ

∞∑
k=0

(θλ)k F k (30)

So, the capital stock process has a solution of the form

kt = λkt−1 +
λ

α
Et

[ ∞∑
n=0

(θλ)n k∗t+n

]
(31)

Note now how adding adjustment costs changes the solution for a rational expectations

model. This produces a second-order difference equation, and the solution is no longer com-

pletely forward-looking. Instead, the capital stock has a forward-looking component, which

is a geometric discounted sum, but it also has a backward-looking component, whereby it

depends on its own lagged value.

An Example: Investment, Output, and the Cost of Capital

The model can be fleshed out by stating what are the determinants of the frictionless

optimal capital stock. For instance, if the production function was of the Cobb-Douglas

form, then the optimal capital stock would take the form

K∗
t =

Yt

Ct
(32)

where Yt is output and Ct is the cost of capital. Using lower-case letters to denote logs,

this can be written as

k∗t = yt − ct (33)
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So, the capital stock is determined by

kt = λkt−1 +
λ

α
Et

[ ∞∑
n=0

(θλ)n (yt+n − ct+n)

]
(34)

Now assume that output and the cost of capital both follow AR(1) processes

yt = ρyyt−1 + εy
t (35)

ct = ρcct−1 + εc
t (36)

The infinite sum component of the solution can now be written as

Et

∞∑
n=0

(θλ)n yt+n =

[ ∞∑
n=0

(θλρy)
n

]
yt

=
1

1− θλρy
yt (37)

while

Et

∞∑
n=0

(θλ)n ct+n =
1

1− θλρc
ct (38)

So, the capital stock process is

kt = λkt−1 +
λ

α

1
1− θλρy

yt −
λ

α

1
1− θλρc

ct (39)

This gives us a “reduced-form” relationship between the capital stock, the lagged capital

stock, output and the cost of capital.

Note that the magnitudes of the coefficients on output and the cost of capital depend

positively on the persistence of these variables. If ρy is close to one, then the coefficient on

output will be high, with the same applying for ρc and the cost of capital. One example of

an application of this type of reasoning is in the Tevlin-Whelan JMCB paper on the reading

list. That paper reports much larger coefficients on the cost of capital for computers than

for non-computing equipment, and uses a model of this sort to provide an explanation. The

cost of capital for computing equipment is largely determined by the very persistent shocks

than lead to ever-decreasing computer prices. In contrast, for non-computing equipment,

the cost of capital depends on a set of less persistent variables such as interest rates and

tax incentives. This suggests that the cost of capital should have a smaller coefficient in a

regression for the non-computing capital stock.
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Completely Optional Appendix: The Undetermined Coefficients Method

The other method used to solve these models starts by assuming that one knows the form

of the solution. So, one “guesses” that the solution is of the form

kt = λ1kt−1 + γEt

[ ∞∑
n=0

λn
2k∗t+n

]

From there, one goes on to figure out a unique set of values for λ1, λ2 andγ that are

consistent with this equation, and with the optimality conditions for the capital stock. In

this case

Etkt+1 = λ1kt + γEt

[ ∞∑
n=0

λn
2k∗t+n+1

]
So, we have

−αθ

[
λ1kt + γEt

[ ∞∑
n=0

λn
2k∗t+n+1

]]
+ (1 + α + αθ) kt − αkt−1 = k∗t

(1 + α + αθ − αθλ1) kt = αkt−1 + k∗t + αθγEt

[ ∞∑
n=0

λn
2k∗t+n+1

]

This can be re-written as

kt =
α

(1 + α + αθ − αθλ1)
kt−1+

k∗t
(1 + α + αθ − αθλ1)

+
αθγ

(1 + α + αθ − αθλ1)
Et

[ ∞∑
n=0

λn
2k∗t+n+1

]

So, one can begin to make inferences about the coefficients:

λ1 =
α

(1 + α + αθ − αθλ1)

γ =
1

(1 + α + αθ − αθλ1)
=

λ1

α

λ2 = αθγ = θλ1

The solution is

kt = λkt−1 +
λ

α
Et

[ ∞∑
n=0

(θλ)n k∗t+n

]
(40)

where λ solves

λ (1 + α + αθ − αθλ) = α (41)

This can be re-written as

λ2 −
(

1 +
1
θ

+
1
αθ

)
λ +

1
θ

= 0 (42)

so the solution is the same as that derived from the factorization method above.
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Personally, I am less fond of this method because it involves guessing the form of the

solution, which is a bit of a cheat, because it is still quite algebra-intensive, and because

it becomes impractical to apply once one moves to higher-order difference equations. In

contrast, the factorization method can be used to characterize the solutions of difference

equations of any order.


