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Topic 1: The Solow Model of Economic Growth

Macroeconomics is not a one-size-fits-all type of field. It would be a duanting task to even

attempt to construct a model that explained all interesting macroeconomic phenomena,

and any such model would undoubtedly be complicated and unwieldy, making it difficult to

learn (and teach). For this reason, macroeconomists tend to adopt a more eclectic approach,

with models often being developed with the intention of helping to explain one particular

aspect of macroeconomy.

The first model that we will look at in this class, a model of economic growth originally

developed by MIT’s Robert Solow in the 1950s, is a good example of this general approach.

Solow’s purpose in developing the model was to deliberately ignore some important aspects

of macroeconomics, such as short-run fluctuations in employment and savings rates, in order

to develop a model that attempted to describe the long-run evolution of the economy. The

resulting paper (A Contribution to the Theory of Economic Growth, QJE, 1956) remains

highly influential even today and, despite its relative simplicity, it conveys a number of very

useful insights about the dynamics of the growth process.

The Solow model is also worth teaching from a methodological perspective because

it provides a simple example of the type of dynamic model that is commonly used in

today’s more advanced macroeconomic theory: For those brave souls amongst you who

may be interested in studying more macroeconomics after this course, note that some of

the tricks and terminology introduced here (such as the use logs to derive growth rates, and

the concepts of steady-state growth and convergent dynamics) are widespread in modern

macroeconomics.

An Aside on Notation

We are interested in modelling changes over time in outputs and inputs. A useful mathe-

matical shorthand that saves us from having to write down derivatives with respect to time

everywhere is to write

Ẏt =
dYt

dt
(1)

What we are really interested in, though, is growth rates of series: If I tell you GDP was

up by 5 million euros, that may sound like a lot, but unless we scale it by the overall level

of GDP, it’s not really very useful information. Thus, what we are interested in calculating

is Ẏt

Yt
, and this is our mathematical expression for the growth rate of a series.
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The Solow Model’s Ingredients

The model assumes that GDP is produced according to an aggregate production function

technology. It is worth flagging that most of the key results for Solow’s model can be

obtained using any of the standard production functions that you see in microeconomic

production theory. However, for concreteness, I am going to be specific and limit us to the

case in which the production function takes the Cobb-Douglas form:

Yt = AtK
α
t L1−α

t 0 < α < 1 (2)

where Kt is capital input and Lt is labour input. Note that an increase in At results

in higher output without having to raise inputs. Macroeconomists tend to call increases

in At “technological progress” and we will loosely refer to this as the “technology” term,

but ultimately At is simply a measure of productive efficiency. Because an increase in

At increases the productiveness of the other factors, it is also sometimes known as Total

Factor Productivity (TFP), and this is the term most commonly used in empirical papers

that attempt to calculate this series.

In addition to the production function, the model has four other equations.

• Capital accumulates according to

K̇t = Yt − Ct − δKt (3)

In other words, the addition to the capital stock each period depends positively on

savings (this is a closed-economy model so savings equals investment) and negatively

on depreciation, which is assumed to take place at rate δ.

• Labour input grows at rate n:
L̇t

Lt

= n (4)

• Technological progress grows at rate g:

Ȧt

At

= g

• A fraction s of output is saved each period.

Yt − Ct = sYt (5)
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We have not put time subscripts on the rate of population growth, the rate of tech-

nological progress, the rate of depreciation of capital or the savings rate, because we will

generally consider these to be constant: The Solow model does not attempt to explain

fluctuations in these variables. However, we do wish to charaterise the dynamics of the

model well enough to be able to figure out what happens if these parameters changes. So,

for instance, we will be interested in what happens when there is a once-off increase in the

savings rate.

A Digression on the Production Function

Two well-known features of the Cobb-Douglas production function are worth recapping

here:

• Constant returns to scale (a doubling of inputs leads to a doubling of outputs):

At(µKt)
α(µLt)

1−α = µαµ1−αYt = µYt (6)

• Decreasing marginal returns to factor accumulation (adding extra capital while hold-

ing labour input fixed yields ever-smaller increases in output):

∂Y

∂K
= αAtK

α−1

t L1−α
t (7)

(

∂2Y

∂K

)

= α (α − 1) AtK
α−2

t L1−α
t < 0 (8)

This turns out to be the key element of the model. Think about why it is sensible:

If a firm acquires an extra unit of capital, it should raise its output. But if the firm

keeps piling on extra capital without raising the number of workers available to use

this capital, the increases in output will probably taper off. In the Cobb-Douglas

case, the parameter α dictates the pace of this tapering off.

Modelling Dynamics using Tricks with Logs

One of the purposes of this class is to teach you some tricks that macroeconomists use when

constructing and solving models. So here’s the first: The use of logarithims can be very

helpful when dealing with dynamic models. One reason for this is the following property:

d (log Yt)

dt
=

d (log Yt)

dYt

dYt

dt
=

Ẏt

Yt

(9)
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The growth rate of a series is the same as the derivative of its log with respect to time (note

the use of chain-rule of differentiation in the above equation.)

Two other useful properties of logarithms that will also help us characterise the dynamics

of the Solow model are the following:

log (XY ) = log X + log Y (10)

log
(

XY
)

= Y log X (11)

We can apply each of these properties to get a useful representation of the growth rate of

output:

log(Yt) = log(AtK
α
t L1−α

t ) (12)

= log(At) + log(Kα
t ) + log(L1−α

t ) (13)

= log(At) + α log(Kt) + (1 − α) log(Lt) (14)

Now taking the derivative with respect to time, we get the required formula:

Ẏt

Yt

=
Ȧt

At

+ α
K̇t

Kt

+ (1 − α)
L̇t

Lt

(15)

This takes us from the Cobb-Douglas formula involving levels to a simple formula involving

growth rates. The growth rate of output per worker is simply

Ẏt

Yt

−

L̇t

Lt

=
Ȧt

At

+ α

(

K̇t

Kt

−

L̇t

Lt

)

(16)

Thus, there are two sources of increases in output per worker:

• Technological progress

• Capital deepening (i.e. increases in capital per worker)

The Solow model provides a useful framework for understanding how technological

progress and capital deepening interact to determine the growth rate of output per worker.

Steady-State Growth

The first thing we are going to do with the Solow model is figure out what this economy

looks like along a path on which output growth is constant. Macroeconomists refer to such

constant growth paths as steady-state growth paths. We don’t necessarily want to study
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only constant-growth paths, but we will see below that the Solow-model economy tends to

converge over time towards this path.

First note that, given constant growth rates for technology and labour input, all varia-

tions in output growth are due to variations in the growth rate of capital input:

Ẏt

Yt

= g + α
K̇t

Kt

+ (1 − α)n (17)

So for output growth to be constant, we must also have capital growth being constant.

We can also show that these growth rates for capital and output must be the same, so

that the capital-output ratio is constant along a constant growth. To see this, re-write the

capital accumulation equation as

K̇t = sYt − δKt (18)

and divide across by Kt on both sides

K̇t

Kt

= s
Yt

Kt

− δ (19)

The growth rate of the capital stock depends negatively on the capital-output ratio Kt

Yt
. So,

for the capital stock to be growing at a constant rate, then Kt

Yt
must be constant. But Kt

Yt

can only be constant if the growth rate of Kt is the same as the growth rate of Yt.

With this result in mind, we see that the steady-state growth rate must satisfy

Ẏt

Yt

= g + α
Ẏt

Yt

+ (1 − α)n (20)

Subtracting α Ẏt

Yt
from both sides, we get

(1 − α)
Ẏt

Yt

= g + (1 − α)n (21)

So, the steady-state growth rate is

Ẏt

Yt

=
g

1 − α
+ n (22)

Only the growth rate of technology, g, and the factor controlling the extent of diminishing

marginal returns to capital, α, can affect the growth rate of output per worker.

This is a key result: All the other parameters have no effect on the steady-state growth

rate. For example, economies with higher saving rates do not have faster steady-state
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growth rates. Why is this? An increase in the saving rate can raise the growth rate initially

by boosting capital accumulation. But diminishing marginal returns implies that during

this period capital growth will outstrip output growth. And this will not last: Equation

(19) tells us that capital growth depends negatively on the capital-output ratio. So higher

saving rates can produce temporary increases the growth rate of output, but canot get the

economy to a path involving a faster steady-state growth rate.

Growth Accounting versus Growth Theory

This result also illustrates an important qualification to the decomposition of growth into

capital deepening and technological progress given by equation (16). Such decompositions

(known as growth accounting studies) are quite commonly carried out, with researchers

concluding that a certain fraction of the growth in output per worker over a certain period

was due to capital deepening. However, these calculations are based on an arithmetic

decomposition of the growth in output per worker, and should not be confused with an

economic theory explaining the ultimate sources of growth.

In particular, the Solow model tells us that we should be careful not to draw from

such calculations that policies based solely on encouraging capital deepening are capable

of boosting the growth rate in the long run. Diminishing marginal productivity of capital

implies that steady growth can not be maintained based on capital deepening alone. Ulti-

mately, it is technological progress that offsets the effects of diminishing marginal returns,

and thus allows capital deepening to play a role along the steady growth path.

A Useful Expression for Output Per Worker

Our next goal is to provide a full characterisation of the dynamics of capital and output

in the Solow model. To do this, there is a particular characterisation of output per worker

that turns out to be very useful. First, let us define the capital-output ratio as

xt =
Kt

Yt

(23)

So, the production function can be expressed as

Yt = At (xtYt)
α L1−α

t (24)

Here, we are using the fact that

Kt = xtYt (25)
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Dividing both sides of this expression by Y α
t , we get

Y 1−α
t = Atx

α
t L1−α

t (26)

Taking both sides of the equation to the power of 1

1−α
we arrive at

Yt = A
1

1−α

t x
α

1−α

t Lt (27)

So, output per worker is
Yt

Lt

= A
1

1−α

t x
α

1−α

t (28)

This equation tells us that all fluctuations in output per worker are due to either changes

in technological progress or changes in the capital-output ratio. Because At is assumed to

grow at a constant rate each period, this means that all of the interesting dynamics for

output per hour stem from the behaviour of the capital-output ratio. We will now describe

how this ratio behaves.

Dynamics of the Capital-Output Ratio

Using our terminology for the capital-output ratio, we can re-write equation (19) as

K̇t

Kt

=
s

xt

− δ (29)

Again using logarithm tricks, note that

log xt = log
Kt

Yt

= log Kt + log
1

Yt

= log Kt + log Yt
−1 = log Kt − log Yt (30)

Taking derivatives with respect to time we have

ẋt

xt

=
K̇t

Kt

−

Ẏt

Yt

(31)

Now using equation (17) for output growth and equation (29) for capital growth, we can

derive a useful equation for the dynamics of the capital-output ratio:

ẋt

xt

= (1 − α)
K̇t

Kt

− g − (1 − α)n (32)

= (1 − α)(
s

xt

−

g

1 − α
− n − δ) (33)

This dynamic equation has a very important property: The growth rate of xt depends

negatively on the value of xt. In particular, when xt is over a certain value, it will tend to
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decline, and when it is under that value it will tend to increase. Thus the capital-ouput

ratio exhibits convergent dynamics: It tends to converge to a specific long-run steady-state

value.

What is this long-run value, which we will label x∗? It is the value consistent with
ẋ
x

= 0. This implies that
s

x∗
−

g

1 − α
− n − δ = 0 (34)

This solves to give

x∗ =
s

g
1−α

+ n + δ
(35)

Given this expression for the steady-state capital-output ratio, we can also derive a more

intuitive-looking expression to describe the convergence properties of the ratio. We do this

by both multiplying and dividing the right-hand-side of equation (33) by ( g
1−α

+ n + δ):

ẋt

xt

= (1 − α)(
g

1 − α
+ n + δ)

(

s/xt −
g

1−α
− n − δ

g
1−α

+ n + δ

)

(36)

The last term inside the brackets can be simplified to give

ẋt

xt

= (1 − α)(
g

1 − α
+ n + δ)

(

1

xt

s
g

1−α
+ n + δ

− 1

)

(37)

= (1 − α)(
g

1 − α
+ n + δ)

(

x∗

xt

− 1

)

(38)

= (1 − α)(
g

1 − α
+ n + δ)

(

x∗
− xt

xt

)

(39)

This equation states that each period the capital-output ratio closes a fraction equal to

(1 − α)( g
1−α

+ n + δ) of the gap between the current value of the ratio and its steady-state

value.

The Steady-State Level of Output Per Worker

We have derived the dynamic behaviour of the capital-output ratio in the Solow model.

It turns out to be pretty easy to also derive the model’s predictions for the behaviour of

output per worker. This is because output per worker is determined by At, which we know

follows a set path, and by the capital-output ratio, whose dynamics we have just derived.

To see this, apply the take-logs-and-derivatives trick to equation (28) to get the growth

rate of output per worker in terms of technological progress and changes in the capital-
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output ratio:
Ẏt

Yt

−

L̇t

Lt

=
1

1 − α

Ȧt

At

+
α

1 − α

ẋt

xt

(40)

Substituting in the growth rate of x from equation (39) to get

Ẏt

Yt

−

L̇t

Lt

=
g

1 − α
+ α(

g

1 − α
+ n + δ)

(

x∗
− xt

xt

)

(41)

Output growth equals the steady-state growth rate g
1−α

plus or minus that element due to

the capital-output ratio converging towards its steady-state level.

The model also gives us an expression for the steady-state path for output per worker,

i.e. the path towards which output is always converging in which xt = x∗. This is obtained

by plugging the steady-state capital-output ratio into equation (28) to get

(

Yt

Lt

)

∗

= A
1

1−α

t

(

s
g

1−α
+ n + δ

)
α

1−α

(42)

This formula provides a way to calculate the long-run effects on the level of output per

worker of changes in the savings rate, depreciation rate etc.

Concrete Example 1: Convergence Dynamics

Often, the best way to understand dynamic models is to load them onto the computer and

see them run. This is easily done using spreadsheet software such as Excel or econometrics-

oriented packages such as RATS. Figures 1 to 3 provide examples of the behaviour over time

of two economies, one that starts with a capital-output ratio that is half the steady-state

level, and other that starts with a capital output ratio that is 1.5 times the steady-state

level.

The parameters chosen were s = 0.2, α = 1

3
, g = 0.02, n = 0.01, δ = 0.06. Together

these parameters are consistent with a steady-state capital-output ratio of 2. To see, this

plug these values into (35):
(

K

Y

)

∗

=
s

g
1−α

+ n + δ
=

0.2

1.5 ∗ 0.02 + 0.01 + 0.06
= 2 (43)

The first chart shows how the two capital-output ratios converge, somewhat slowly,

over time to their steady-state level. This slow convergence is dictated by our choice of

parameters: Our “convergence speed” is:

λ = (1 − α)(
g

1 − α
+ n + δ) =

2

3
(1.5 ∗ 0.02 + 0.01 + 0.06) = 0.067 (44)
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So, the capital-output ratio converges to its steady-state level at a rate of about 7 percent

per period. These are fairly standard parameter values for annual data, so this should be

understood to mean 7 percent per year.

The second chart shows how output per worker evolves over time in these two economies.

Both economies exhibit growth, but the capital-poor economy grows faster during the

convergence period than the capital-rich economy. These output per worker differentials

may seem a little small on this chart, but the final chart shows the behaviour of the growth

rates, and this chart makes it clear that the convergence dynamics can produce substantially

different growth rates depending on whether an economy is above or below its steady-state

capital-output ratio. During the initial transition periods, the capital-poor economy grows

at rates over 6 percent, while the capital-rich economy grows at under 2 percent. Over

time, both economies converge towards the steady-state growth rate of 3 percent.

Concrete Example 2: Changes in Parameters

Figures 4 to 6 examine what happens when the economy is moving along the steady-state

path consistent with the parameters just given, and then one of the parameters is changed.

Specifically, it examines the effects of changes in s, δ and g.

Consider first an increase in the savings rate to s = 0.25. This has no effect on the

steady-state growth rate. But it does change the steady-state capital-output ratio from 2

to 2.5. So the economy now finds itself with too little capital relative to its new steady-state

capital-output ratio. The growth rate jumps immediately and only slowly returns to the

long-run 3 percent value. The faster pace of investment during this period gradually brings

the capital-output ratio into line with its new steady-state level.

The increase in the savings rate permamently raises the level of output per worker rela-

tive to the path that would have occurred without the change. However, for our parameter

values, this effect is not that big. This is because the long-run effect of the savings rate

on output per worker is determined by s
α

1−α , which in this case is s0.5. So in our case, 25

percent increase in the savings rate produces an 11.8 percent increase in output per worker

(1.250.5 = 1.118). More generally, a doubling of the savings rate raises output per worker

by 41 percent (20.5 = 1.41).

The charts also show the effect of an increase in the depreciation rate to δ = 0.11.

This reduces the steady-state capital-output ratio to 4/3 and the effects of this change are

basically the opposite of the effects of the increase in the savings rate.
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Finally, there is the increase in the rate of technological progress. I’ve shown the effects

of a change from g = 0.02 to g = 0.03. This increases the steady-state growth rate of

output per worker to 0.045. However, as the charts show there is another effect: A faster

steady-state growth rate for output reduces the steady-state capital-output ratio. Why?

The increase in g raises the long-run growth rate of output; this means that each period

the economy needs to accumulate more capital than before just to keep the capital-output

ratio constant. Again, without a change in the savings rate that causes this to happen, the

capital-output ratio will decline. So, the increase in g means that—as in the depreciation

rate example—the economy starts out in period 25 with too much capital relative to its

new steady-state capital-output ratio. For this reason, the economy doesn’t jump straight

to its new 4.5 percent growth rate of output per hour. Instead, after an initial jump in the

growth rate, there is a very gradual transition the rest of the way to the 4.5 percent growth

rate.
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Figure 1
Convergence Dynamics for the Capital-Output Ratio
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Figure 2
Convergence Dynamics for Output Per Worker
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Figure 3
Convergence Dynamics for Growth Rates of Output Per Worker
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Figure 4
Capital-Output Ratios: Effects of Increases in ....
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Figure 5
Growth Rates of Output Per Hour: Effects of Increases in ....
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Figure 6
Output Per Hour: Effects of Increases in ....
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