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Abstract

In this paper, we analyse cooperative situations in which the formation

of a coalition results in spillovers to the players outside that coalition. To

this type of situation a new type of game, a spillover game, is associated, in

which both cooperative and strategic elements play a role. Some basic game

theoretical concepts are analysed for this new class of games and illustrated by

means of three applications of our model: government situations, public-private

connection problems and cartels in oligopolistic markets.

1 Introduction

In standard noncooperative game theory it is assumed that players cannot make

binding agreements. That is, each cooperative outcome must be sustained by Nash

equilibrium strategies. At the other end of the spectrum, in cooperative game theory,

players have no choice but to cooperate. The standard transferable utility (TU)

model assumes that all players involved want to come to an agreement and the

main task is to propose socially acceptable solutions. Noncooperative theory tries

to predict the outcome of strategic situations using equilibrium concepts that at

least require the predicted strategy combinations to be robust against unilateral

deviations.

Both approaches seem to be diametrically opposed. Many real life situations,

however, exhibit both cooperative and strategic features. Neither approach suffices

in these cases. Examples of these situations can be found in parliaments where

governments are based on multiple-party coalitions. Here noncooperative theory

obviously does not work, since agreements have to be made. Also TU theory is not

sufficiently rich, since typically not all parties represented in parliament are part of

the government. Furthermore, TU theory does not take into account the spillover

effects from coalitions on the parties outside. These spillovers measure the impact
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of government policy on the opposition parties and thus reflect in some way the

parties’ relative positions in the political spectrum.

This kind of spillovers is present in many situations. For example, one can

think of a situation where a group of people needs to be connected to a source,

like in a telecommunication network. In the literature, many solution concepts

have been introduced (cf. Bird (1976)), but these do not take into account the

strategic considerations of players not to join in the public enterprise. However,

spillovers occur if one assumes that publicly accessible networks can be built by

smaller groups, hence creating a special type of free-rider effect. In order to find a

fair solution, these possible spillovers should be taken into account.

As another example, one can think of a group of firms that compete in an

oligopolistic industry. In assessing the benefits of a cartel, a crucial part is played

by comparing the profit when joining the cartel and when staying out. Our spillover

model allows for the analysis of all intermediate cases in between a completely non-

cooperative (eg, Cournot-Nash) situation and a fully cooperative (cartel) situation.

From the aforementioned examples one can conclude that in many cooperative

situations, a socially acceptable solution concept should incorporate the strategic

options that result from spillovers. Essentially, spillovers induce a noncooperative

aspect in cooperative situations. They provide incentives for players to join or to

stay out of a coalition. In TU games, these spillovers are not taken into account,

but one implicitly assumes that players do not have a better alternative than to stay

in the group. As mentioned before, in the government example, this is typically

not the case. In short, cooperative game theory lacks the strategic outside options

players have, whereas noncooperative theory, on the other hand, does not allow for

explicit cooperation.

To capture spillovers in a cooperative model, a new class of games is introduced,

namely spillover games. This class of games builds on ideas introduced in Van der

Rijt (2000) for government situations. In a spillover game, each coalition is assigned

a value, as in a TU game. In addition, all the players outside the coalition are

separately assigned a value as well, capturing the spillovers from the coalition to

the outside players. We restrict ourselves to a coalitional structure where there is

one coalition (eg, a government, a group building a public network, a cartel) and a

group of singletons outside. This allows us to redefine some basic concepts of TU

theory, while not assuming ex ante that all players are fully cooperating.

The model of spillover games is explicitly aimed at analysing the influence of a

coalition S on the payoffs of the players outside S. In this sense, spillover games

differ fundamentally from games in partition function form (cf. Bloch (1996) and Yi
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(1997)), where for each coalition S the influence of the possible coalition structures

on the player set outside S on the payoff to coalition S is analysed. Hence, the

causality of spillovers in spillover games is reversed compared to partition function

form games.

The structure of the paper is as follows. In Section 2 the class of spillover games

is introduced. Our three main applications are presented: government situations,

public-private connection problems, and cartels in oligopolistic markets. In Sec-

tion 3 we introduce the core concept for the class of spillover games and present a

balancedness result reminiscent of TU theory. In Section 4 government situations

are analysed in more detail. A power index is introduced that is constructed in

a similar way as the Shapley value for TU games. Section 5 takes a closer look at

public-private connection problems and introduces a notion of convexity for spillover

games. Finally, Section 6 deals with the Cournot model for oligopolistic markets and

shows how this type of noncooperative games can be transformed into a spillover

game in a natural way.

2 The model

A spillover game is a tuple G = (N,W, v, z), where N = {1, . . . , n} is the set of

players, W ⊂ 2N is a set of coalitions that can cooperate and v and z are payoff

functions, to be specified below.

One main feature of our model is the assumption that exactly one coalition of

players will cooperate. Contrary to TU games, however, we do not impose that the

resulting coalition is the grand coalition. In the example of government formation,

the grand coalition would be a very extreme outcome.

The set W ⊂ 2N contains those coalitions which can actually cooperate. An

element of W is called a winning coalition. In a government situation, a natural

choice for W is the collection of coalitions which have a majority in parliament.

We assume that W satisfies the following properties:

• N ∈ W.

• S ⊂ T, S ∈ W ⇒ T ∈ W (monotonicity).

The first property ensures that the game is not trivial, in the sense that there is

at least one winning coalition. The second property states that if a small group of

players S can cooperate (eg, have a majority), then a larger coalition T ⊃ S is also

winning.
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The (nonnegative) payoff function v : 2N → IR+ assigns to every coalition S ⊂ N

a value v(S). If S ∈ W, then v(S) represents the total payoff to the members of S

in case they cooperate. For S /∈ W we simply impose v(S) = 0.

Suppose that the players in S cooperate. Then the members of S do not only

generate a payoff to themselves. Their cooperation also affects the players outside

S. The payoffs to the other players, which are called spillovers (wrt S), are given

by the vector zS ∈ IR
N\S
+ . Again, we simply put zS = 0 for S /∈ W. Note that

whereas the members of S still have the freedom to divide the amount v(S) among

themselves, the payoffs to the players outside S are individually fixed.

Spillovers (wrt S) are called positive, if the total payoff to every coalition U ⊂

N\S is higher than what U can earn on its own, so if

∑

i∈U

zSi ≥ v(U) (1)

for every U ⊂ N\S. Likewise, spillovers are negative if for every U ⊂ N\S the

reverse inequality holds in (1). Note that if for different coalitions U not the same

inequality holds, spillovers are neither positive nor negative.

A set of winning coalitions W ⊂ 2N is called N -proper if S ∈ W implies

N\S /∈ W. In the context of coalition formation in politics, this property relates to

the fact that a coalition and its complement can not have a majority at the same

time.

In the remainder of this section, we provide three examples to illustrate the

spillover model.

Example 1 Consider a parliament with four parties1: the communists (COM), so-

cialists (SOC), Christian democrats (CD) and liberals (LIB). The seats are divided

as follows:

party COM SOC CD LIB

share of seats 0.1 0.3 0.25 0.35

This gives rise to a spillover game with N = {COM,SOC,CD,LIB} and an N -

proper set W of coalitions having a majority:

W = {{SOC,CD}, {SOC,LIB}, {CD,LIB}, {COM,SOC,CD},

{COM,SOC,LIB}, {COM,CD,LIB}, {SOC,CD,LIB}, N} .

1This example is inspired by the model presented in Van der Rijt (2000).
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For the winning coalitions the payoffs could look as follows (the first entry in the

two-dimensional z-vectors corresponds to COM):2

S v(S) zS

{SOC,CD} 12 (4, 3)

{SOC,LIB} 10 (2, 7)

{CD,LIB} 15 (0, 4)

{COM,SOC,CD} 19 0

{COM,SOC,LIB} 13 6

{COM,CD,LIB} 14 4

{SOC,CD,LIB} 18 1

N 16

Obviously, COM and LIB do not have much in common, which is reflected by a

relatively low payoff to coalitions in which both are involved. The central position of

CD is reflected by the relatively high spillover it experiences when a coalition forms

in which it is not involved. If all four parties get together, the result will not be

stable, which is reflected by the low value for N .

Example 2 Consider a group of players that can be connected to a source. If a

player is connected to the source, he receives some fixed benefit. On the other hand,

by creating connections costs are incurred. Each player can construct a direct link

between the source and himself, or he can connect himself via other players.

There are two types of connections: public and private. If a player constructs a

public link, other players can use this link to get to the source. A private connection

can only be used by the player who constructs it.

When constructing a network, players can cooperate in order to reduce costs. We

assume that if a group of players cooperate, the players within that coalition construct

an optimal public network, which by definition is open for use by other players. Once

this optimal public network for the coalition is constructed, the players outside can

decide whether or not to connect to the source, using the public network in place,

possibly complemented with private connections. The corresponding payoffs to these

individual players are the spillovers that result from the formation of this coalition.

We call the resulting model a public-private connection (ppc) problem. Note that in

principle every coalition can build the public network and hence, W = 2N .

In section 5 we introduce ppc problems more formally and analyse their corre-

sponding games.

2It is not within the scope of this paper to provide an underlying model from which these coalition

values can be derived. We simply give some ad hoc numbers to illustrate the concept of spillover

game.
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Example 3 Consider a group of firms in an oligopolistic market. We assume that

these firms play a Cournot game and that the outcome will be the Cournot (Nash)

equilibrium of this game.

If the firms cooperate and form a cartel, in general their total profit increases.

Indeed, in the extreme case of full cooperation, a de facto monopoly will ensue with

corresponding monopoly profits. We can also consider the situation in which only

a coalition of firms S ⊂ N decides to form a cartel. Clearly, this will increase the

total profit of the firms in S. But not only will the members of S be affected by the

cartel. By cooperating, the firms in the cartel influence the market price, and hence,

the profits of the other firms. In section 6, we show how these cartel profits and

corresponding externalities can be captured in a spillover game.

3 The core

In this section we extend the definition of core for TU games to the class of spillover

games. Furthermore, we characterise nonemptiness of the core by means of a bal-

ancedness property.

A payoff vector x ∈ IRN belongs to the S-core if for every coalition, the total

payoff to the members of that coalition exceeds its value. So, for S ∈ W we define

the S-core by

CS(G) = {x ∈ IRN |
∑

i∈S

xi = v(S), xN\S = zS , ∀T⊂N :
∑

i∈T

xi ≥ v(T )},

or, equivalently,

CS(G) = {x ∈ IRN+ |
∑

i∈S

xi = v(S), xN\S = zS , ∀T∈W :
∑

i∈T

xi ≥ v(T )}.

An allocation in the S-core is stable in the sense that there is no other winning

coalition T that objects to the proposed allocation on the basis of it being able to

obtain more if it cooperates. The core of G consists of all undominated payoff vectors

in the union of all S-cores, so

C(G) = undom(
⋃

S∈W

CS(G)),

where undom(A) = {x ∈ A | ¬∃y∈A : y ª x}.

For TU games, Bondareva (1993) and Shapley (1967) characterised nonemptiness

of the core by means of the concept of balancedness. We establish a similar result for

the class of W-stable spillover games. A game G = (N,W, v, z) is called W-stable if

S, T ∈ W, S ∩ T = ∅ ⇒

{

∑

i∈T z
S
i ≥ v(T ),

∑

i∈S z
T
i ≥ v(S).
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The idea behindW-stability is that there can exist no two disjoint winning coalitions

with positive spillovers. For, if two such coalitions were present, the game would

have no stable outcome in the sense that both these coalitions would want to form.

Note that positive spillover games and spillover games with N -proper W belong to

the class of W-stable games.

For S ⊂ N , we define eS to be the vector in IRN with eSi = 1 if i ∈ N and eSi = 0

if i /∈ N . A map λ :W → IR+ is called S-subbalanced if

∑

T∈W

λ(T )eTS ≤ eSS .

We denote the set of all such S-subbalanced mappings by BS .

A game G = (N,W, v, z) is S-subbalanced if for all S-subbalanced λ : W → IR+

it holds that

∑

T∈W

λ(T )



v(T )−
∑

i∈(N\S)∩T

zSi



 ≤ v(S).

Suppose winning coalition S forms, giving its members a total payoff of v(S). Next,

consider a winning coalition T and consider the situation where T forms. The payoff

to T would then be v(T ), but some of its members would have to forego the spillovers

resulting from the formation of S. So, after subtracting these opportunity costs, the

net payoff to T equals the expression inside the brackets. A game is S-subbalanced

if dividing the net payoffs of all winning coalitions T in an S-subbalanced way yields

a lower payoff than v(S).

Theorem 1 Let G = (N,W, v, z) be a W-stable spillover game. Then C(G) 6= ∅ if

and only if there exists an S ∈ W such that G is S-subbalanced.

Proof. See appendix.

4 Government situations

In this section, we analyse government situations and introduce a power index that

can be used to indicate the relative power of the parties involved. On the basis of

Example 1 we introduce the concept of marginal vector for spillover games, which we

use to define a power index that is reminiscent of the Shapley value for TU games.

Contrary to its TU counterpart, strategic considerations play an important role in

our definition of marginal vector.

Example 4 Recall the government situation in Example 1. To construct a marginal

vector, assume that first the largest party, LIB, enters. Since this party on itself
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is not winning, its marginal contribution is zero. To keep things simple, we as-

sume that parties always join if the coalition in place is not yet winning. Hence,

the second largest party, SOC, joins, creating a winning coalition. Its payoff equals

the marginal contribution to the existing coalition, which equals 10-0=10. Next, the

third largest, CD has the choice whether to join or not. If it joins, its marginal

contribution is 18-10=8. If it does not join, the worst that can happen is that coali-

tion {COM,SOC,LIB} eventually cooperates, giving CD a payoff (spillover) of 6.

Hence, CD joins the existing coalition. Finally, COM decides not to join, giving it

a spillover of 1 rather than the marginal contribution of -2. So, the resulting coali-

tion will be {SOC,CD,LIB} with payoff 1 to COM , 10 to SOC, 8 to CD and 0

to LIB.

The procedure described in the previous example resembles the well-known concept

of marginal vector for TU games. The crucial difference, however, is that contrary

to the TU case, in our context players do not have to join the existing coalition.

As long as there is a winning coalition in place and the worst that can happen if a

player does not join is better than joining, that player has the option to stay outside.

In order to define the concept of marginal vector, we need to introduce some

more notation. An ordering on the player set N is a bijection σ : {1, . . . , n} → N ,

where σ(k) = i means that player i ∈ N is at position k. The set of all n! orderings

on N is denoted by Π(N). The set of predecessors of player i ∈ N according to

ordering σ ∈ Π(N) is denoted by P σi = {j ∈ N |σ−1(j) < σ−1(i)}.

Let (N,W, v, z) be a spillover game. The marginal vector corresponding to σ,

σ ∈ Π(N), denoted by Mσ(N,W, v, z), is defined recursively. By Sσk we denote the

current coalition after the first k players have entered and we initialise Sσ0 = ∅. Let

k ∈ {1, . . . , n}. We assume that player i = σ(k) has to join the coalition in place,

Sσk−1, if this coalition is not yet winning. Otherwise, he has to choose between

joining and staying out. As a result of monotonicity of W, once a winning coalition

is in place, a winning coalition will result regardless of whether the next player joins

or not. The minimum payoff to player i = σ(k) if he chooses not to join the winning

coalition Sσk−1 equals

mσ
i = min

T⊂N\{i}:T∩Pσi =S
σ
k−1

zTi .

If he does join, his marginal contribution equals

cσi = v(Sσk−1 ∪ {i})− v(S
σ
k−1).
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If player i has the choice, he decides not to join Sσk−1 if the worst that can happen

to i if he stays outside, mσ
i , is better than his marginal contribution cσi . So,

Sσk =

{

Sσk−1 if Sσk−1 ∈ W and mσ
i > cσi ,

Sσk−1 ∪ {i} otherwise

and

Mσ
i (N,W, v, z) =

{

z
Sσn
i if Sσk−1 ∈ W and mσ

i > cσi ,

cσi otherwise.

According to this procedure, the coalition Sσ = Sσn eventually results and in the

corresponding marginal vector, v(Sσ) is divided among the members of Sσ and the

players in N\Sσ get their corresponding spillovers.

The solution that is computed in Example 4 is the marginal vector that corre-

sponds to the ordering based on the shares of the seats. Of course, this procedure

can be performed with all orderings on the parties, each leading to a marginal vector.

The Shapley value (cf. ?)) is defined as the average of these marginal vectors:

Φ(N,W, v, z) =
1

n!

∑

σ∈Π(N)

Mσ(N,W, v, z).

The Shapley value can be interpreted as an expected vector of power indices for

parties if the orderings on the players are equally likely. The total power according

to different marginal vectors need not be the same. Contrary to each marginal vector

separately, the Shapley value is not “supported” by a single coalition.

Example 5 Recall from Example 4 that the marginal vector of the game in Ex-

ample 1 corresponding to the order σ = (LIB, SOC,CD,COM) equals M σ =

(1, 10, 8, 0), with resulting coalition {SOC,CD,LIB}. If we take the order τ =

(CD,COM,LIB, SOC), we obtain the marginal vector M τ = (0, 4, 0, 14) with cor-

responding coalition {COM,CD,LIB}. Note that
∑

i∈N M
σ
i 6=

∑

i∈N M
τ
i .

Computing all marginal vectors and taking the average yields the Shapley value:

Φ(N,W, v, z) =
1

24
(24, 140, 172, 116).

It is readily seen that there exists no order on the parties such that the correspond-

ing marginal vector coincides with the Shapley value and hence, there is no single

coalition giving rise to this solution.

The procedure presented in the definition of marginal vector should not be viewed

as a description of how governing coalitions are or should be formed. Rather, these

marginal vectors are an indication of what could happen and through the Shapley

value, they provide an insight into the relative power of the players.
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The strategic element in our definition of marginal vector is that a player can

choose not to join when it is in his interest to stay separate. We assume that players

are cautious in that they only decide not to join when the worst that can happen

when doing so is better than the payoff if they join.3 This strategic element can

be extended in several ways. For example, one can assume that the players play a

sequential move extensive form game and the resulting marginal vector is the payoff

vector corresponding to a subgame perfect equilibrium. One would then have to

make some additional assumptions about what happens when indifferences occur or

when there are multiple equilibria.

5 Public-private connection problems

In many allocation decisions resulting from Operations Research (OR) problems,

spillovers occur naturally. In this section, we analyse public-private connection (ppc)

problems as described in Example 2. We address two main questions: which coalition

will cooperate and how should the value of this coalition be divided among its

members?

Before formally introducing ppc problems, we start with an example.

Example 6 Consider the ppc problem depicted in Figure 1, where * is the source,

the bold numbers indicate the players, the numbers between parentheses represent the

benefits if the players are connected to the source and the numbers on the edges are

the corresponding construction costs.

@
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1(4)

2(6)
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3

2 2

10

3

6

Figure 1: A ppc problem

First, consider the grand coalition. The best this coalition can do is to build a

public network connecting all players to the source, creating links {∗, 1}, {1, 2} and

3This is quite standard practice in cooperative game theory. Usually, a noncooperative game

is turned into a TU game by assigning values to coalitions based on the maximin principle, ie, by

assuming that the players in a coalition maximise their payoff given that the other players try to

minimise this payoff.
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{2, 3}. The net payoff equals 4 + 6 + 5− (3 + 2 + 2) = 8.

Next, consider coalition {2}4. It is optimal for this coalition to create {∗, 1}

and {1, 2}, giving player 2 a payoff of 6 − (2 + 3) = 1. The construction of these

public links results in spillovers for players 1 and 3. Player 1 can use the public

network and does not have to create an extra private link, so his spillover equals his

benefit of 4. Player 3 can also use the public network, complemented with the private

connection {2, 3}, giving him a spillover of 5− 2 = 3.

Next, consider {3}. Since every path to the source is more expensive that his

benefit, player 3 will not construct a network at all, giving him a payoff of 0. Player

1 then has to construct a private link {∗, 1} with spillover 1 and player 2, who cannot

use 1’s private link, will have to construct {∗, 1} and {1, 2} privately, giving him a

spillover of 1 as well.

Doing this for every possible coalition, we obtain a spillover game G = (N,W, v, z)

with N = {1, 2, 3}, W = 2N and the following payoffs:

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} N

v(S) 0 1 1 0 5 3 4 8

zS (1, 1, 0) (4, 2) (4, 3) (1, 1) 3 4 4

A public-private connection or ppc problem is a triple (N, ∗, b, c), whereN = {1, . . . , n}

is a set of agents, * is a source, b : N → IR+ is a nonnegative benefit function and

c : EN∗ → IR+ is a nonnegative cost function, where N ∗ = N ∪ {∗}. ES is defined

as the set of all edges between pairs of elements of S ⊂ N ∗, so that (S,ES) is the

complete graph on S:

ES = {{i, j} | i, j ∈ S, i 6= j}.

b(i) represents the benefits if player i ∈ N is connected to * and c({i, j}) represents

the costs if a link between i ∈ N ∗ and j ∈ N∗ is formed.

Links can be created either publicly or privately, as described in Example 2. To

avoid unnecessary diversions, we simply assume that the optimal public network for

each coalition is unique.

A network of edges is a set K ⊂ EN∗ . By N(K) ⊂ N we denote the set of

players that are connected to the source in network K.

A ppc problem (N, ∗, b, c) gives rise to a public-private connection or ppc game

(N,W, v, z) with W = 2N ,

v(S) = max
K⊂EN∗

{
∑

i∈S∩N(K)

b(i)−
∑

k∈K

c(k)} (2)

4It may seem strange that a single player or even the empty coalition can build a public network.

For the sake of expositional clarity, we do not a priori exclude this possibility.
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for all S ⊂ N and

zSi = max
L⊂EN∗\KS

{b(i)IN(KS∪L)(i)−
∑

`∈L

c(`)},

for all S ⊂ N, i ∈ N\S, where KS denotes the unique network K that maximises

(2), and IA(i) equals 1 if i ∈ A and 0 if i /∈ A.

Although players outside S can use the public network created by S, the spillovers

need not be positive. This is caused by the assumption that only the players within

the coalition that eventually builds the public network can cooperate, whereas the

players outside can only build private links. As a result, the costs of a particular

connection may have to be paid more than once by the players outside the coalition

and consequently, they are worse off than when they cooperate.

A spillover game G = (N,W, v, z) is called superadditive if

v(T ) ≥ v(S) +
∑

i∈T\S

zSi

for all S ⊂ T ⊂ N . If a game is superadditive, then it is beneficial to form a large

coalition: the payoff to S and T\S is larger if these coalitions merge rather than

stay separate. Note that if spillovers are positive, this condition is stronger than the

TU definition v(T ) ≥ v(S)+v(T\S), ie, if spillovers are positive, the coalitions have

a bigger incentive not to merge.

G is convex if

v(S ∪ T ) +
∑

i∈S∩T

z
S\T
i ≥ v(S) +

∑

i∈T

z
S\T
i

for all S, T ⊂ N , or equivalently,

v(T ∪ U)−
∑

j∈T

zUj ≥ v(S ∪ U)−
∑

j∈S

zUj (3)

for all U ⊂ N,S ⊂ T ⊂ N\U . Convexity can be interpreted in terms of increasing

marginal contributions: if a large coalition T decides to join U , then its marginal

contribution, being the value of the resulting coalition minus the opportunity costs

of staying separate, is larger than the marginal contribution (to U) of a smaller

coalition S.5 It is readily verified that every convex spillover game is superadditive.

Public-private connection games are superadditive, as is shown in the following

proposition.

5Note that contrary to its TU analogue, requiring (3) only for U ⊂ N with |U | = 1 is strictly

weaker.

12



Proposition 1 Let (N, ∗, b, c) be a ppc problem. Then the corresponding game

(N,W, v, z) is superadditive.

Proof. Let S ⊂ T ⊂ N . Let KS be the optimal public network for S and for all

i ∈ T\S, let L
N\S
i be the optimal private network for i, given that KS is present.

Define K̄ = KS ∪
⋃

i∈T\S L
N\S
i . Then

v(T ) = max
K⊂EN∗

{
∑

i∈T∩N(K)

b(i)−
∑

k∈K

c(k)}

≥
∑

i∈T∩N(K̄)

b(i)−
∑

k∈K̄

c(k)

=
∑

i∈S∩N(K̄)

b(i)−
∑

k∈KS

c(k) +
∑

i∈(T\S)∩N(K̄)

b(i)−
∑

k∈K̄\KS

c(k)

≥v(S) +
∑

i∈T\S

b(i)IN(K̄)(i)−
∑

k∈K̄\KS

c(k)

≥v(S) +
∑

i∈T\S






b(i)I

N(KS∪L
N\S
i )

(i)−
∑

`∈L
N\S
i

c(`)







=v(S) +
∑

i∈T\S

zSi .

¤Although public-private connection games are superadditive, they need not be

convex, as is illustrated in the following example.
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Figure 2: A ppc problem

Example 7 Consider the ppc problem depicted in Figure 2. Let S = {1}, T = {1, 3}
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and U = {2}. Then for the corresponding game (N,W, v, z) we have

v(T ∪ U)−
∑

j∈T

zUj = v(N)− z
{2}
1 − z

{2}
3

= 3− 1− 1

< 3− 1

= v({1, 2})− z
{2}
1

= v(S ∪ U)−
∑

j∈S

zUj .

Hence, this game is not convex.

Let us return to the ppc problem in Example 6. To find a suitable solution for this

problem, we first consider the core of the corresponding ppc game G. The S-cores are

given in the following table, where Conv(A) = {x ∈ IRN | ∃t∈IN∃x1,...,xt∈A∃(λ1,...,λt)∈∆t :

x =
∑t

i=1 λix
i} is the convex hull of A ⊂ IRN .

S CS(G)

∅ ∅

{1} {(1, 4, 2)}

{2} {(4, 1, 3)}

{3} ∅

{1, 2} Conv({(4, 1, 3), (1, 4, 3)})

{1, 3} Conv({(3, 4, 0), (1, 4, 2)})

{2, 3} Conv({(4, 4, 0), (4, 1, 3)})

N Conv({(4, 1, 3), (4, 4, 0), (3, 5, 0), (1, 5, 2), (1, 4, 3)})

Since the N -core (weakly) dominates all the other cores, we have C(G) = CN (G).

Note that there are some core elements that are supported by other coalitions as

well, all of which contain player 2. The core element (4, 1, 3) is even supported by

every coalition containing player 2.

In Figure 3 we depict the four S-cores that yield core elements and (therefore) lie

in the hyperplane with total payoff 8. The payoff to player 1 is in normal typeface,

the payoff to player 2 is italic and the payoff to player 3 is bold. The N -core CN (G)

is the shaded pentagon, C{1,2} is the line segment with the triangles, C{2,3} is the

line segment with the stars and C{2} is the point (4, 1, 3).

To solve the ppc problem, suppose for the moment that all players cooperate.

We have already seen that it is optimal for the grand coalition to connect all its

members to the source. Since the benefits of a coalition do not depend on the shape

of the network that is formed as long as everyone is connected, the optimal network

14
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Figure 3: The core of G

in this ppc problem, {{∗, 1}, {1, 2}, {2, 3}}, is actually a minimum cost spanning

tree (Claus and Kleitman (1973)). In this context, Bird (1976) proposed that each

player pays the costs of the (unique) link that is adjacent to him and lies on the path

between him and the source. So, one way to solve a ppc problem is to assume that

construction costs are divided using Bird’s rule and everyone gets his own benefit.

According to this Bird-like procedure, player 1 receives 4 − 3 = 1, player 2 gets

6 − 2 = 4 and player 3 gets 5 − 2 = 3. This yields the core element (1, 4, 3) as

solution.

This procedure, however, has some elementary flaws. The nice properties of the

Bird rule for mcst problems follow from the assumption that all players have to coop-

erate and connect to the source. Moreover, this rule does not take the spillovers into

account. The strategic option of players not to participate in a coalition undermines

the Bird approach. Player 1 will never agree to the proposed payoff vector (1, 4, 3),

since he will be better off leaving the grand coalition, which will lead to a payoff

(spillover) of 4. Knowing this, player 3 can argue that he should at least receive 3,

his spillover when player 2 forms a coalition on his own. Taking this into account,

the payoff vector (4, 1, 3) seems a more reasonable outcome. Because player 2 on

his own will build a network that also connects player 1 to the source, the latter

player occupies a position of power in this ppc problem, which should somehow be

reflected in his payoff.

The payoff vector (4, 1, 3) is a core element of the corresponding ppc game and

15



is supported by all coalitions containing player 2. This payoff, however, is not

acceptable to player 2. He can argue that if he were to refuse to build his optimal

public network, it would then be optimal for players 1 and 3 to work together, giving

player 2 a spillover of 4.

By considering this kind of strategic threats of the players not to cooperate, any

seemingly reasonable proposal can be dismissed. As a result, it is not clear which

coalition will eventually emerge and what the corresponding payoffs will be.

This phenomenon of free-riding is well-known in the context of public goods.

Although it is socially optimal for all the players to cooperate in order to provide a

public good, the players separately have the strategic incentive not to do so.

One way to solve this problem is to apply the Shapley value, as defined in the

previous section. In each marginal vector, the strategic aspects mentioned above are

taken into account. By averaging over all marginal vectors, some kind of “average”

influence of these noncooperative considerations is reflected in the payoff.

Example 8 Consider the ppc problem of Example 6. The Shapley value equals

Φ(N,W, v, z) =
1

6
(17, 20, 11).

As was discussed in the previous section, the definition of marginal vector can be

adapted to reflect the level of strategic elements one wants to incorporate in the

model.

6 Cartels in oligopolistic markets

In this section we show how to construct a spillover game out of the model of an

oligopolistic market that is characterised by Cournot (quantity) competition. The

Shapley value that was introduced in Section 4 is used to assess the relative power

of firms in the market.

Consider a market with set of firmsN = {1, . . . , n}. The inverse demand function

is given by P : IRN+ → IR+. The production technology of each firm i ∈ N is

represented by the cost function Ci : IR+ → IR+. The profit function for firm i,

πi : IR
N
+ → IR, is defined by

πi(qi, q−i) = P (qi, q−i)qi − Ci(qi)

for all q ∈ IRN+ , where q−i = {qj}j∈N\{i}. Simultaneously solving the profit max-

imisation problem for all firms yields the Cournot-Nash equilibrium profits π̄ =

(π̄1, . . . , π̄n).
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This oligopolistic market can be modelled as a spillover game G = (N,W, v, z)

in the following way. Take W = 2N . The Cournot-Nash equilibrium corresponds

to a situation where S = ∅ with v(∅) = 0 and z∅ = π̄. Subsequently, let S = {i}

for some i ∈ N . This still corresponds to a Cournot situation, ie, v({i}) = π̄i and

z{i} = π̄−i.

For any coalition S consisting of more than one firm, we assume that there are

economies of scale so that the coalition (or cartel) can produce the product at the

lowest possible costs. So, if 2 ≤ |S| ≤ n − 1, we basically have a Cournot situation

with n− |S|+ 1 firms:

{

maxqS∈IRS+
{P (qS , qN\S)

∑

i∈S q
S
i −

∑

i∈S Ci(qi)},

maxqj∈IR+
{P (qS , qN\S)qj − Cj(qj)} for all j ∈ N\S.

This gives the vector of equilibrium profits (π̄S , π̄N\S), where π̄N\S = (π̄j)j∈N\S ,

leading to the values v(S) = π̄S and zS = π̄N\S .

For the grand coalition N , we simply solve the monopoly problem and obtain

v(N) = max
qN∈IRN+

{

P (qN )
∑

i∈N

qNi −
∑

i∈N

Ci(qi)
}

.

The Shapley value can be used as an indication of the market power that firms

have when they cooperate in a cartel. The advantage of using the framework of

spillover games for oligopolistic markets is that it incorporates in one model such

extreme cases as fully noncooperative competition and fully cooperative collusion.

Furthermore, all intermediate cases are included as well. The Shapley value averages

out the profits in all these cases, thereby indicating the relative power of firms in

the market.

Note, however, that the Shapley value only considers one cartel for each permu-

tation. There is no a priori reason why there could not be two or more cartels in

one market.

In the remainder of this section, we consider some examples of a market with

three firms. The linear inverse demand function is specified by P (q1, q2, q3) = b −

a(q1 + q2 + q3), a > 0, b > 0. It is assumed that the cost functions have constant

marginal costs, ie, for firm i it holds that Ci(q) = ciq, 0 < c1 ≤ c2 ≤ c3. Additionally,

it is assumed that b ≥ 3c1 − c2 − c3, b ≥ 2c1 − c3, and b ≥ c1.
6 For this spillover

game the values for v and z are given in Table 1.

It is not clear a priori what will happen in a market like this. In the following

example we analyse two situations.

6These assumptions ensure that all equilibrium profits are nonnegative.
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S v(S) zS

∅ 0 ( (b+c2+c3−3c1)
2

16a , (b+c1+c3−3c2)
2

16a , (b+c1+c2−3c3)
2

16a )

{1} (b+c2+c3−3c1)2

16a ( (b+c1+c3−3c2)
2

16a , (b+c1+c2−3c3)
2

16a )

{2} (b+c1+c3−3c2)2

16a ( (b+c2+c3−3c1)
2

16a , (b+c1+c2−3c3)
2

16a )

{3} (b+c1+c2−3c3)2

16a ( (b+c2+c3−3c1)
2

16a , (b+c1+c3−3c2)
2

16a )

{1, 2} (b+c3−2c1)2

9a
(b+c1−2c3)2

9a

{1, 3} (b+c2−2c1)2

9a
(b+c1−2c2)2

9a

{1, 2} (b+c31−2c2)2

9a
(b+c2−2c1)2

9a

N (b−c1)2

4a

Table 1: Values for v and z.

Example 9 For b = 50, a = 1, c1 = 5, c2 = 10, c3 = 15 the Shapley value is

approximately given by Φ(G) ≈ (280, 147, 80). With the same values for b and a, and

cost parameters c1 = 5, c2 = 6 and c3 = 10, we have Φ(G) ≈ (211, 184, 67). Finally,

with constant marginal costs c1 = c2 = c3 = 10 one obtains Φ(G) = (100, 100, 100).

From the previous example one can deduce that apparently the magnitude of the

synergy effects of collusion is important. Consider for example the case where firms

are symmetric. Take any permutation of N . From Table 1 one can see that the

first firm is indifferent between joining and not joining. It was assumed, in defining

the Shapley value, that in case of indifference a player joins. The firm that arrives

second has to compare its marginal contribution with the worst-case outside option.

Joining the coalition means that the third firm gets an equal profit to the two firms

in the cartel (since firms are symmetric). If marginal costs equal c, then the marginal

contribution of the second firm equals 7(b−c)2

144a < (b−c)2

16a . Hence, the second firm will

never join. Then the same holds for the third firm.

In the following example we show the influence of the demand parameter a on

the Shapley value.

Example 10 Consider an oligopolistic market with three firms, affine demand and

linear costs. The marginal costs for the three firms equal c1 = 5 and c2 = c3 = 10,

respectively. Since firms 2 and 3 have the same cost function, they also have the

same payoff according to the Shapley value. We want to investigate the influence of

the slope of the demand function on the difference in Shapley value between firms 1

and 2, ie, we want to assess how the cost advantage of firm 1 works through in the

Shapley value. The inverse demand function is taken to be P (Q) = 50 − aQ where

a is taken from the interval [ 12 , 5]. As Figure 4 shows, firm 1’s advantage decreases

with the slope. The stronger demand reacts on price, the less strategic advantage the

more efficient firm has.
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Figure 4: The difference in the Shapley value between firms 1 and 2.

7 Discussion

Public-private connection situations as described in Section 5 are not the only class

of OR problems in which spillovers occur. A related phenomenon arises in travelling

salesman situations (Tamir (1989)). In a travelling salesman situation, there is a

graph in which the vertices represent the locations of the players (and the salesman)

and the edges represent the roads between them along which the salesman can travel.

The problem is to find a cheapest Hamiltonian circuit in this graph, where each edge

has a nonnegative cost associated with it.

Also, each subcoalition faces the same problem of finding a cheapest Hamiltonian

circuit through the vertices in which the players in this coalition and the salesman

are located. This gives rise to a cooperative cost game. As is the case in minimum

cost spanning tree situations, however, one does not take into account that there are

spillovers involved. If a subcoalition of players decides to work together and invite

the salesman to travel to them according to their cheapest tour, the salesman might

come near some players outside the coalition, making it cheaper for them to have

him come to visit them as well.

In sequencing situations (cf. Curiel et al. (1989)), spillovers can also play a role.

In a sequencing situation, there is a queue of players waiting to be served. The

players in the queue might have different opportunity costs, so moving high-cost

players to the front while compensating the low-cost players through side payments

can result in a Pareto improvement.

Normally, in such situations, only pairs of players who are adjacent in the queue
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are allowed to switch, so that a third player can never suffer. If we use our spillover

model, however, this restriction is unnecessary, since the effect of any pairwise switch

on the other players can be taken into account explicitly.

In Section 6 we show how an oligopolistic market model can be turned into a

spillover game. In economics there are many more cases in which one wants to anal-

yse an essentially noncooperative situation where cooperative considerations play a

role. A well-known example from the literature concerns environmental externalities.

We refer to the contributions of Chander and Tulkens (1997) and Helm (2001), who

analyse a TU game that is obtained in a standard (minmax) way from an economic

situation with externalities. They show that a certain equilibrium of the underlying

game is an element of the core of the corresponding TU game. However, what these

papers do not take explicitly into account is the possibility that firms might benefit

from an agreement between their competitors to internalise the externalities and

thence opt not to cooperate. This in turn threatens the stability of the agreement

between the other firms.

Crucial in the aforementioned externality example is that there is a free-rider

effect created by a group of firms that cooperates on the remaining firms. To find a

solution that can deal with these effects, they have to be reflected in the model.

Spillover games are tailor-made to achieve this and therefore we think that this

class of games can be used in many economic situations. Notably in cases with some

sort of market failure (eg, externalities, public goods) where cooperation between

economic agents is needed – or even desirable – to mend the failure, but where

cooperation need not be enforceable. If cooperation is enforceable, the TU model

provides an adequate way to share the benefits/costs related to the market failure.

If this is not possible, like for example in many public goods situations, free-rider

effects arise and our spillover model is more appropriate.
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Appendix

Proof of Theorem 1: Let S ∈ W. Then

CS(G) 6= ∅ ⇔{x ∈ IRN+ |
∑

i∈S

xi = v(S), xN\S = zS , ∀T∈W :
∑

i∈T

xi ≥ v(T )} 6= ∅

⇔v(S) = min
x∈IRN

{
∑

i∈S

xi | ∀T∈W :
∑

i∈T

xi ≥ v(T ), ∀i∈S : xi ≥ 0, xN\S = zS}

(∗)
⇔v(S) = max

λ,µ,ψ
{

∑

T∈W

λ(T )v(T ) +
∑

i∈N\S

µiz
S
i −

∑

i∈N\S

ψiz
S
i |

∑

i∈S

µie
{i} +

∑

i∈N\S

µie
{i} −

∑

i∈N\S

ψie
{i} +

∑

T∈W

λ(T )eT = eS , λ, µ, ψ ≥ 0}

⇔v(S) = max
λ,µ,ζ

{
∑

T∈W

λ(T )v(T ) +
∑

i∈N\S

ζiz
S
i |

∑

i∈S

µie
{i} +

∑

i∈N\S

ζie
{i} +

∑

T∈W

λ(T )eT = eS , λ, µ ≥ 0}

⇔∀λ∈BS :
∑

T∈W

λ(T )v(T ) +
∑

i∈N\S

ζiz
S
i ≤ v(S),

where ∀i∈N\S : ζi =
∑

T∈W:i∈T

λ(T )

⇔∀λ∈BS :
∑

T∈W

λ(T )v(T ) +
∑

i∈N\S

∑

T∈W:i∈T

λ(T )zSi ≤ v(S)

⇔∀λ∈BS :
∑

T∈W

λ(T )



v(T )−
∑

i∈(N\S)∩T

zSi



 ≤ v(S)

The equivalence (*) follows from duality theory. Note that nonemptiness of the

primal feasible set follows from W-stability and that the dual feasible set is always

nonempty. Since C(G) 6= ∅ if and only if there exists an S ∈ W such that CS(G) 6= ∅,

the assertion follows. ¤
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