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1 Basic Concepts

From a mathematical point of view, everything in this course happens in finite

dimensional real spaces. Therefore, we can – without loss of generality – restrict

ourselves to the topology on Rn, induced by the Euclidian norm.1

Definition 1.1 (Euclidian norm). Let x, y ∈ Rn. The Euclidian norm between x

and y, denoted by ‖x− y‖, equals

‖x− y‖ =
√

(x1 − y1)2 + · · · + (xn − yn)2.

Definition 1.2 (ε-neighbourhood). Let a ∈ Rn. The ε-neighbourhood of a, denoted

by Uε(a) is the set

Uε(a) = {x ∈ Rn : ‖x− a‖ < ε}.

Using this definition we can define the concept of an open set.

Definition 1.3 (open set; closed set). A set A ⊆ R
n is open if for every a ∈ A,

there exists an εa > 0, such that Uεa(a) ⊂ A. A set A ⊆ Rn is closed if Ac is open.

Recall that a set may be neither open nor closed. Take, for example, the interval

A = (0, 1]. For every ε > 0 it holds that Uε(1) * A. Also, for 0 ∈ Ac, Uε(0) * Ac.

So, neither A nor Ac are open.

∗Department of Economics, Trinity College, Dublin 2, Ireland. Email: thijssej@tcd.ie
1Theorem 6.27 in David Wilkins’s notes.
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Definition 1.4 (interior point; boundary point). Let A ⊆ Rn. A point a ∈ A is an

interior point of A if there exists an ε-neighbourhood Uε(a), such that Uε(a) ⊂ A.

A point a ∈ A is a boundary point of A if for all ε > 0, it holds that Uε(a) * A.

The set of interior points of A is denoted by int(A), whereas the set of boundary

points of A is denoted by ∂(A).

In this part of the course we are concerned with optimizing functions. Therefore,

we first need to recall the notions of maximum and minimum.

Definition 1.5 (maximum; minimum). Let A ⊆ R
n. The function f : A → R

attains a

1. global maximum at a ∈ A if ∀x∈A : f(x) ≤ f(a),

2. global minimum at a ∈ A if ∀x∈A : f(x) ≥ f(a),

3. local maximum at a ∈ A if ∃ε>0∀x∈Uε(a) : f(x) ≤ f(a),

4. local minimum at a ∈ A if ∃ε>0∀x∈Uε(a) : f(x) ≥ f(a).

A maximum/minimum is called strict if the inequalities in the above definition

are strict. In optimisation theory it is often assumed that functions are differentiable

“as often as needed”. We say that f(·) is a Ck function if f has continuous partial

derivatives of up to and including order k.

The partial derivative of f with respect to xi is denoted by ∂f
∂xi

or Dif . The

second order partial derivative of f with respect to xi and xj is denoted by ∂2f
∂xi∂xj

,

or Dijf .

Definition 1.6 (Jacobian; Hessian). Let A ⊆ Rn be a set and let f : A → R be a

C2 function. The (row-) vector of first order partial derivatives

Df = (D1f, . . . ,D2f),

is called the Jacobian (matrix) of f . The matrix of second order partial derivatives

Hf =









D11f · · · D1nf
...

. . .
...

Dn1f · · · Dnnf









,

is called the Hessian (matrix) of f .

Sometimes we use the transpose of the Jacobian, a (column) vector, which we

call the gradient :

∇f = Df⊤.
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The order of differentiation does not matter:

∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

.

In other words, the Hessian is a symmetric matrix.

In determining whether a “candidate optimum” is a maximum or a minimum,

it will turn out that the structure of the Hessian plays an important part.

Definition 1.7 (positive (semi) definite). Let A be a symmetric n×n matrix. Then

A is positive (semi) definite if x⊤Ax > (≥)0, for all x ∈ Rn.

Property 1.1. Let A be a symmetric n × n matrix. The following properties are

equivalent.

1. A is positive (semi) definite.

2. All eigenvalues λi of A satisfy λi > (≥)0.

3. All principal submatrices2 of A have a positive (non-negative) determinant.

Definition 1.8 (negative (semi) definite). Let A be a symmetric n×nmatrix. Then

A is negative (semi) definite if x⊤Ax < (≤)0, for all x ∈ Rn.

Property 1.2. Let A be a symmetric n × n matrix. The following properties are

equivalent.

1. A is negative (semi) definite.

2. All eigenvalues λi of A satisfy λi < (≤)0.

3. All principal submatrices of −A have a positive (non-negative) determinant.

We will, therefore, often need to compute determinants of matrices. Some results

that will help us follow.

Theorem 1.1. If A is a square diagonal matrix A = [aij ]i,j, then det(A) = a11 · · · ann.

Theorem 1.2. If A is a matrix, then det(A⊤) = det(A).

Theorem 1.3. If A is a square matrix, then:

1. if a multiple of one row of A is added to another row to produce a matrix B,

the det(B) = det(A);

2The k-th principal submatrix of A is the matrix constructed by taking the first k rows and the

first k columns from A.
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2. if two rows are interchanged to produce B, then det(B) = − det(A);

3. if one row of A is multiplied by α to produce B, then det(B) = α · det(A).

We will also encounter functions mapping sets into higher dimensional Euclidian

spaces. So, if g : Rn → R
m is a differentiable function with typical element g(x) =

(g1(x), . . . , gm(x)), then the Jacobian matrix – denoted by Dg – is given by

Dg =









D1g1 · · · Dng1
...

. . .
...

D1gm · · · Dngm









.

In other words, we stack all the Jacobian (row) vectors of the coordinate functions

in one matrix. Finally, two important properties.

Property 1.3 (chain rule). Let f : Rn → R
m and g : Rk → R

n be functions and let

a ∈ Rk be such that g is differentiable in a and f is differentiable in g(a). Then the

function f ◦ g : Rk → R
m is differentiable in a and D(f ◦ g)(a) = Df(g(a))Dg(a).

Property 1.4 (2nd order Taylor polynomial). Let f : Rn → R be a C2 function

and let c ∈ Rn. Then for every x ∈ Rn, there exists ξ ∈ Rn, such that

f(x) = f(c) +Df(c)(x− c) +
1

2
(x− c)⊤Hf(ξ)(x− c).

2 Optimization of a Function on R

The material in this section is a summary of the results that you have encountered

(I assume) in Analysis 1. The central problem is as follows.

Problem 1. Let f : I → R, where I ⊆ R. Find the location and type of the optima

of f on I.

The following elementary theorem reduces the number of possible candidates

substantially.

Theorem 2.1 (first-order condition). Let a ∈ int(I). If a is an optimum location

for f and if f ′(a) exists, then f ′(a) = 0.

So, the only possible interior points where f ′ exists that could qualify as optima

locations, are the ones for which f ′(a) = 0. These points are called the stationary

points of f . The possible locations of optima can now be found as follows.

Algorithm 1 (finding candidate optima). 1. Determine the stationary points of

f ;
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2. Determine the points where f is not differentiable;

3. Determine the boundary points of I.

The next task, of course, is to determine which of these candidates (if any)

represents an optimum location. Two results are important here.

Theorem 2.2. Let a ∈ int(I) and let f be differentiable in a neighbourhood Uε(a)

and let f ′(a) = 0. If

∀x∈Uε(a):x<a : f ′(x) > (<)0, and ∀x∈Uε(a):x>a : f ′(x) < (>)0,

then f(a) is a strict local maximum (minimum) of f .

Theorem 2.3 (second-order condition). Let a ∈ int(I) and let f be differentiable

on I, such that f ′′(a) exists. If f ′(a) = 0 and f ′′(a) < (>)0, then f(a) is a strict

local maximum (minimum) of f .

Note that Theorems 2.2 and 2.3 do not say anything about boundary points or

non-differentiable points. Those have to be studied in isolation.

Example 2.1. Consider the functions f1(x) = x4, f2(x) = −x4, and f3(x) = x3.

For each of these we have f ′i(x) = 0. Furthermore, f ′′i (0) = 0. So, Theorem 2.3 does

not help us. However, from Theorem 2.2 it immediately follows that fi(0) = 0 is a

local maximum for i = 1, a local minimum for i = 2, and neither for i = 3.

Finally, we address the question whether one can say something about the global

character of optima. In general, that is a difficult question to answer, but there are

two cases where something can be said. Firstly, if f is differentiable on I, then

Theorem 2.2, together with an investigation of the closure of int(I) gives a full

answer. Secondly, if I is compact we have the following result.

Theorem 2.4 (Weierstrass). Let I be compact and non-empty, and let f be contin-

uous on I. The f has a global maximum and a global minimum.

Example 2.2. Let f : [−1, 3] → R, where

f(x) =
1

4
x4 − 5

6
x3 +

1

2
x2 − 1.

1. The stationary points are

f ′(x) = 0

⇐⇒ x3 − 5
2x

2 + x = x(x2 − 5
2x+ 1) = x(x− 2)(x− 1

2) = 0

⇐⇒ x = 0 ∨ x = 2 ∨ x = 1
2 .
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2. Together with the boundary points this gives the candidate optima locations

x = −1 ∨ x = 0 ∨ x = 2 ∨ x = 1
2 ∨ x = 3.

3. These locations have the values

f(−1) = 7
12 , f(0) = −1, f(1/2) = −1 + 7

192 , f(2) = −5
3 , f(3) = 5

4 .

So, the global minimum is f(2) = −5/3 and the global maximum is f(3) = 5/4.

3 Convexity

Theorem 2.3 gives a sufficient condition for the nature of a stationary point. From

a geometric point of view this theorem tells us that local concavity (convexity) is a

sufficient condition for a stationary point to be a local maximum (minimum). Recall

that a function f : R→ R is concave (convex) if the line connecting any two points

on the graph of f lies entirely under (above) the graph itself (see Figure 1)

f convex f concave

Figure 1: A convex (left-panel) and concave (right-panel) function.

This idea can be generalized to Rn.

Definition 3.1 (convex set). A set A ⊂ Rn is convex if for all x, y ∈ A and λ ∈ [0, 1]

it holds that λx+ (1 − λ)y ∈ A.

The point λx+(1−λ)y ∈ A is called a convex combination and is just a straight

line between x and y.
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Definition 3.2 (concave/convex function). Let f : A → R, with A ⊂ R
n convex.

The function f is concave (convex) if for all x, y ∈ A and all λ ∈ [0, 1] it holds that

f(λx+ (1 − λ)y) ≥ (≤)λf(x) + (1 − λ)f(y).

Note that convexity of A ensures that f(λx+(1−λ)y) exists. f is called strictly

concave (convex) if the inequality is strict. Also, f is (strict) convex iff −f is (strict)

concave.

From Figure 1 you can see that another way to characterize concavity is by using

tangent lines. You can see that f is concave (convex) if for every point a, the graph

of f lies entirely below (above) the tangent line through a.

Lemma 3.1. Let f : A → R be C1, with A ⊂ R
n open and convex. Then f is

concave (convex) if and only if for all x, a ∈ A, it holds that

f(x) − f(a) ≤ (≥)Df(a)(x− a).

f is strictly concave (convex) if the inequality is strict for all x 6= a.

We can now generalize Theorem 2.3.

Theorem 3.1. Let f : A → R be C2, with A ⊂ R
n open and convex. Then f

is concave (convex) if and only if for all x ∈ A, it holds that Hf(x) is negative

(positive) semi-definite.

Example 3.1. Let f(x1, x2) = x4
1 + x2

1x
4
2. Then

Df(x) =
[

4x3
1 + 2x1x

4
2 4x2

1x
3
2

]

, and Hf(x) =

[

12x2
1 + 2x4

2 8x1x
3
2

8x1x
3
2 12x2

1x
2
2

]

.

The determinants of the principal submatrices ofHf are det(Hf11) = 12x2
1+2x4

2 ≥ 0

and

det(Hf) = (12x2
1 + 2x4

2)(12x
2
1x

2
2) − (8x1x

3
2)

2 = x2
1x

2
2(144x

2
1 − 40x4

2) ≷ 0,

so that Hf is neither positive nor negative semi-definite. Therefore, f is neither

concave nor convex.

Example 3.2 (Cobb-Douglas). Let f : Rn
+ → R be given by3

f(x) = cxα1

1 xα2

2 · · · xαn
n ,

where c, α1, . . . , αn > 0. When is f strict concave?

3In economics this type of function is called a Cobb-Douglas function. We will encounter it

more often later on.
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Note that

Df(x) =
[

α1

x1
f(x) · · · αn

xn
f(x)

]

, and

Hf(x) =









α1(α1−1)
x2
1

f(x) · · · α1αn

x1xn
f(x)

...
. . .

...
αnα1

xnx1
f(x) · · · αn(αn−1)

x2
n

f(x)









.

We want to apply Property 1.2 and note that

det(−Hfkk) ≡ | −Hfkk| = (−1)kf(x)k

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1(α1−1)
x2
1

· · · α1αk

x1xk

...
. . .

...
αkα1

xkx1
· · · αk(αk−1)

x2
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)kf(x)k
(

α1

x1
· · · αk

xk

)

∣

∣

∣

∣

∣

∣

∣

∣

α1−1
x1

· · · αk

xk

...
. . .

...
α1

x1
· · · αk−1

xk

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)kf(x)k
(

α1

x1
· · · αk

xk

)

∣

∣

∣

∣

∣

∣

∣

∣

α1−1
x1

· · · α1

x1

...
. . .

...
αk

xk
· · · αk−1

xk

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)kf(x)k
(

α1

x2
1

· · · αk

x2
k

)

∣

∣

∣

∣

∣

∣

∣

∣

α1 − 1 · · · α1

...
. . .

...

αk · · · αk − 1

∣

∣

∣

∣

∣

∣

∣

∣

.
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By using several row operations we can compute this determinant as follows.

∣

∣

∣

∣

∣

∣

∣

∣

α1 − 1 · · · α1

...
. . .

...

αk · · · αk − 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑k
i=1 αi − 1

∑k
i=1 αi − 1 · · · ∑k

i=1 αi − 1

α2 α2 − 1 · · · α2

...
...

. . .
...

αk αk · · · αk − 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

k
∑

i=1

αi − 1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1

α2 α2 − 1 · · · α2

...
...

. . .
...

αk αk · · · αk − 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

k
∑

i=1

αi − 1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1

0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

k
∑

i=1

αi − 1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 · · · 0

0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

k
∑

i=1

αi − 1

)

(−1)k−1.

Therefore,

det(−Hfkk) = (−1)2k−1

(

α1

x2
1

· · · αk

x2
k

)

f(x)k

(

k
∑

i=1

αi − 1

)

,

which is positive for all k = 1, . . . , n, only if
∑n

i=1 αi < 1.

4 Optimization of a Function on Rn

We now turn to optimization problems with functions f : Rn → R.

Problem 2. Let f : A → R, with A ⊆ R
n. Determine the location and type of

optima of f on A.

First, like with functions on R, we give a criterion that reduces the number of

candidate optimum locations.

Theorem 4.1 (first-order condition). Let c be an interior point of A. If c is an

optimum location for f and the partial derivatives of f exist at c, then Df(c) = 0.
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Proof. Let f be differentiable at c and let u ∈ Rn be such that ‖u‖ = 1. Consider

the function F on some open interval I = (−δ, δ), defined by

F (t) = f(c+ t · u).

Since f(c) is an optimum of f , it holds that F (0) is an optimum of F .Since F is

differentiable at 0, with F (0) = Df(c)u (chain rule) it follows from Theorem 2.1

that F ′(0) = 0, i.e. that Df(c)u = 0.

The vector u has been chosen arbitrarily, so that Df(c)u = 0 for all u. Take

u = ei, i = 1, . . . , n, then

D1f(c) = 0,D2f(c) = 0, . . . ,Dnf(c) = 0,

i.e. Df(c) = 0.

So, completely analogous to Section 2 we note that the only possible candidates

for an optimum are those interior points c where f is differentiable and Df(c) = 0,

the boundary points of A, and the points where f is not differentiable.

Definition 4.1 (stationary points). The solutions to the system of equationsDf(x) =

0 are called the stationary points of f .

This definition is consistent with the definition we gave for the one-dimensional

case. There are stationary points that do not lead to a maximum or a minimum.

Definition 4.2 (saddle point). A saddle point of f is a stationary point that is not

an optimum location.

So, we get the following algorithm.

Algorithm 2 (finding candidate optima). 1. Determine the stationary points of

f ;

2. Determine the points where f is not differentiable;

3. Determine the boundary points of A.

We have the following generalization of Theorem 2.3.

Theorem 4.2 (second-order condition). Let f be C2 on on A and let c ∈ A be an

interior point of A.

1. If Df(c) = 0 and Hf(c) is negative (positive) definite, then f(c) is a strict

local maximum (minimum) of f .

2. If Df(c) = 0 and Hf(c) is neither negative nor positive definite, then f(c) is

a saddle point of f .
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Proof.

1. We give a sketch of the proof of this part. Suppose Hf(c) is negative definite.

Since the second order partial derivatives are continuous, there exists a neigh-

bourhood Uε(c), such that Hf(x) is negative semi definite for all x ∈ Uε(c).

Take x ∈ Uε(c), x 6= c. Then there exists ξ between x and c such that (Taylor)

f(x) = f(c) +
1

2
(x− c)⊤Hf(ξ)(x− c).

Since ξ ∈ Uε(c), it holds that Hf(ξ) is positive definite. Therefore

1

2
(x− c)⊤Hf(ξ)(x− c) ≤ 0.

Hence, f(x) ≤ f(c), for all x ∈ Uε(c). Therefore, f(c) is a local maximum.

2. Follows from −f(c) being a local maximum.

3. Suppose Hf(c) is neither negative nor positive definite (i.e. indefinite). Sup-

pose that f(c) is not a saddle point. Then f(c) is a local optimum. Assume,

without loss of generality (wlog) that f(c) is a local minimum of f .

Let u ∈ Rn. Since c is a stationary point of f , and hence an interior point of

A, there exists δ > 0 such that c+ t · u ∈ A for all t ∈ I = (δ, δ). On I, define

the function F by F (t) = f(c + t · u). Then F (0) = f(c) is a local minimum

of F . From the chain rule it follows that F is twice differentiable and that

F ′(t) = Df(c+ t · u)u, and F ′′(t) = u⊤Hf(c+ t · u)u,

for all t ∈ I. Since F (c) is a local minimum of F it holds that F ′′(c) ≥ 0.

But since u has been chosen arbitrarily this means that Hf(c) is positive semi

definite, which is a contradiction.

Theorem 4.2 almost always tells us what kind of point a stationary point of f is.

The only case where we need further investigations is when Hf(c) is singular and

semi-definite (positive of negative). In that case, the Hessian does not give enough

information.

Example 4.1. Consider the function f : R4 → R defined by

f(x) = 20x2 + 48x3 + 6x4 + 8x1x2 − 4x2
1 − 12x2

3 − x2
4 − 4x3

2.

Then

Df(x)⊤ = ∇f(x) =













8x2 − 8x1

20 + 8x1 − 12x2
2

48 − 24x3

6 − 2x4













.
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This implies that the stationary points are (−1,−1, 2, 3) and (5/3, 5/3, 2, 3). Fur-

thermore, the Hessian of f equals

Hf(x) =













−8 8 0 0

8 −24x2 0 0

0 0 −24 0

0 0 0 −2













.

Note that

det(Hf(x)11) = −8

det(Hf(x)22) = 64(3x2 − 1)

det(Hf(x)33) = −1536(3x2 + 1)

det(Hf(x)44) = 3072(3x2 + 1).

It then follows from Theorem 4.2 that f(−1,−1, 2, 3) is a saddle point of f , whereas

f(5/3, 5/3, 2, 3) is a local maximum. Finally, since f is everywhere differentiable

and there are no boundary points, there are no other candidate optima.

Can we say something about the global character of optima? Even more so than

in the one-dimensional case this is a complex matter. There are three situations

where we can say more.

Theorem 4.3 (Weierstrass). Let A ⊂ R
n be compact and non-empty and let f :

A→ R be continuous. Then f has a global maximum and a global minimum on A.

The proof of this theorem is a bit long and tedious and, therefore, omitted.

Theorem 4.4. Let f be a C1 function on A, where A ⊆ Rn is convex and let c be

an interior point of A. If f is concave then f(c) is a global maximum iff Df(c) = 0.

If f is convex then f(c) is a minimum iff Df(c) = 0.

Proof. We prove the result only for concave functions. Define the first order Taylor

polynomial gc : Rn → R around c, i.e.

gc(x) = f(c) +Df(c)(x− c).

Since f is convex it holds that f(x) ≤ gc(x), for all x ∈ A. Since Df(c) = 0, we see

that f(x) ≤ f(c), for all x ∈ A. Therefore, f(c) is a global maximum.

Theorem 4.5. Let A be a closed, non-empty subset of Rn, and let f : A → R be

continuous such that f(x) → −∞ as xi → ±∞ (and xi ∈ A). Then f has a global

maximum on A.
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Proof. Assume wlog that 0 ∈ A. Then there exists rsuch that f(x) ≤ f(0), for all

x ∈ A such that ‖x‖ > r. The set

K = {x ∈ A : ‖x‖ ≤ r},

is compact and, therefore, f attains a global maximum on K (Weierstrass) at, say,

c. Since 0 ∈ K, we find that

f(c) ≥ f(0) ≥ f(x), ∀x ∈ S \K,

so that f has a global maximum on A.

Example 4.2. Consider the function f : R3 → R, defined by

f(x) = x2
1 + 2x2

2 + 3x2
3 + 2x1x2 + 2x1x3.

Then

∇f(x) =









2x1 + 2x2 + 2x3

4x2 + 2x1

6x3 + 2x1









,

implying that (0, 0, 0) is the only stationary point. Also,

Hf(x) =









2 2 2

2 4 0

2 0 6









,

implying that det(Hf(x)11) = 2 > 0, det(Hf(x)22) = 4 > 0, det(Hf(x)33) = 8 > 0.

Therefore, Hf(x) is positive definite for all x ∈ R3 and, hence, f is strictly convex.

From Theorem 4.4 it then follows that f(0, 0, 0, 0) is a global minimum.

5 The Implicit Function Theorem

In economics and business problems we want to optimize some function under con-

straints. For example, suppose that you are the production manager of a company

that produces tables, chairs, etc. To make these items you need wood, nails, and

labour. Your task is to find an allocation of wood, nails, and labour, so as to pro-

duce a certain amount of tables, while minimizing the costs of doing so. Obviously,

you cannot just do anything, as there is a fixed way of how to combine the inputs

(wood, nails, labour) into outputs (tables, chairs, etc.). Economists call these tran-

sition processes technologies. Each one can be thought of as a cooking book recipe:

how do you use the ingredients to produce a nice meal. A technology can be written

as a function gi(x), where x denotes the vector of inputs. The costs of using a vector

13



x of inputs can also be written as a function, say f(x). In general, your problem is

to solve the problem

minimize f(x)

such that g1(x) = b1

... (1)

gm(x) = bm,

where b1, . . . , bm are the pre-specified levels of output you need to produce.

In the next section we will introduce the mathematics of solving such problems.

The solution uses the so-called implicit function theorem. This theorem deals with

the question under what conditions it is possible we can get, from a system of m

equations in n variables (m < n), m equivalent equations, such that m variables

from the vector x = (x1, . . . , xn), can be written as a function of the other n −m

variables. In other words, are there functions ϕ1, . . . , ϕm, such that

xn−m+1 = ϕ1(x1, . . . , xn−m)

... (2)

xn = ϕm(x1, . . . , xn−m),

such that this system is equivalent with (1). If, namely, this is possible we can reduce

the problem of finding optima of f under (1) to finding the optima of the mapping

(x1, . . . , xn−m) 7→ f(x1, . . . , xn−m, ϕ1(x1, . . . , xn−m), . . . , ϕm(x1, . . . , xn−m)), (3)

without any constraints. Then we can apply the results from Section 4 to (3) and

we are done.

Unfortunately, life is not so simple as the following example illustrates.

Example 5.1. Let S = {(x1, x2) ∈ R2 : x2
1 + x2

2 = 1}, i.e. the unit circle. It is

obvious that we cannot describe the entire circle by using a function of the form

x1 = ϕ1(x2), or x2 = ϕ2(x1).

But what if we are more modest? Let’s look at the unit circle. We can see that

for every point a ∈ S, there exists a neighbourhood Uε(a), such that all points in

Uε(a) can be written as a function of the form xi = fi(xj). In other words, we can

not find a global solution to the problem, but a local solution is possible.

We also saw in the previous section that solving optimization problems is, in

first instance, an entirely local business. Recall that we looked at local convexity

and concavity to determine the nature of a candidate optimum. So maybe the local

14



result we found in the example is actually not quite that bad. The question then

becomes: can we always find such a neighbourhood Uε(a), for each point a in the

domain?

Suppose, for now that we have found conditions such that, locally, we can

rewrite (1) as (2). Then, by defining

x(1) = (x1, . . . , xn−m), x(2) = (xn−m+1, . . . , xn), and ϕ = (ϕ1, . . . , ϕm),

then optimizing f under (1) is the same as optimizing F (x(1) := f(x(1), ϕ(x(1))).

The Jacobian matrix of g can be written as

Dg =









gx1x1
· · · gx1xn−m

gx1xn−m+1
· · · gx1xn

...
. . .

...
...

. . .
...

gxmx1
· · · gxmxn−m

gxmxn−m+1
· · · gxmxn









=:
[

Dg(1) Dg(2)
]

.

We can now find the stationary points of F by solving

Df

[

I

Dϕ

]

= 0. (4)

Since g(x(1), ϕ(x(1))) = b =: (b1, . . . , bm), we have Dg = 0. Therefore,

[

Dg(1) Dg(2)
]

[

I

Dϕ

]

= 0.

If Dg(2) is invertible, it then follows from the latter equation that

Dg(1) +Dg(2)Dϕ = 0 ⇐⇒ Dϕ = (Dg(2))−1Dg(1).

Substituting this back into (4) we find that

Df

[

I

(Dg(2))−1Dg(1)

]

= 0.

The interesting thing is that we can solve this last system of equations without any

knowledge of ϕ. This is an essential result, which makes the task of finding the

stationary points of the optimization problem reasonably straightforward.

The main question, of course, is under what conditions we can rewrite (1) locally

as (2). The answer is given by the following theorem.

Theorem 5.1 (Implicit function theorem). Let gi : S → R, i = 1, . . . ,m, be C1

functions and let S be an open subset of Rn. Consider the system of m equations,

with m < n,

g1(x1, . . . , xn) = b1

... (5)

gm(x1, . . . , xn) = bm.
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Let a be a solution to this system. If the Jacobian matrix Dg has rank m, then

there exists a neighbourhood where we can solve the m variables corresponding to the

m independent columns of Dg(a), uniquely as continuous (partially) differentiable

functions ϕ1, . . . , ϕm of the remaining n−m variables.

In other words, if (wlog) a = (c, d) ∈ Rn−m×Rm is a solution to (5) and the last

m columns of Dg(a) are linearly independent, then there exist a neighbourhood U

around c in Rm, a neighbourhood V around d in Rn−m, and a unique C1 function

ϕ : U → V , such that

g(x1, . . . , xn−m, ϕ(x1, . . . , xn−m)) = b,

for all (x1, . . . , xn−m) ∈ U . Note that the partial derivatives of ϕ1, . . . , ϕm, which

are continuous, can be expressed in terms of the partial derivatives of g1, . . . , gm, by

implicit differentiation of the system (5) with respect to xn−m+1, . . . , xn. We can

see this as follows. Assuming (wlog) that Dg(2) is singular in a, then the IFT says

that in a neighbourhood of a it holds that

xn−m+1 = ϕ1(x1, . . . , xn−m)

...

xn = ϕm(x1, . . . , xn−m).

It, therefore, follows that

Dϕ(x(1)) = −
[

Dg(2)(x(1), ϕ(x(1)))
]−1

Dg(1)(x(1), ϕ(x(1))).

Proof. In lecture.

Example 5.2. Let

g1(x1, x2, x3) = x2
1 − x2 − 3x3

3 = 0

g2(x1, x2, x3) = −2x1 + 2x3
2 − x3 = 0.

Differentiation gives the Jacobian

Dg =

[

2x1 −1 −9x2
3

−2 6x2
2 −1

]

.

Note that this matrix has rank 2, since the determinant of the last 2 columns is

non-zero:
∣

∣

∣

∣

∣

−1 −9x2
3

6x2
2 −1

∣

∣

∣

∣

∣

= 1 + 54x2
2x

2
3 6= 0.
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From the IFT we now see that for every point a, with g(a) = 0, we can, locally,

write

x2 = ϕ1(x1), and x2 = ϕ2(x1).

We can now apply implicit differentiation and find

Dϕ(a) = −
[

−1 −9a2
3

6a2
2 −1

]−1 [

2a1

−2

]

= − 1

1 + 54a2
2a

2
3

[

−1 9a2
3

−6a2
2 −1

]−1 [

2a1

−2

]

.

Example 5.3. Let

g(x1, x2, x3) =
1

12
x2

1 +
1

3
x2

2 +
1

27
x2

3.

Differentiation gives:

Dg =
[

2x1

12
2x2

3
2x1

27

]

.

So, rank(Dg) = 1, for all x 6= 0. Since g(x) 6= 1, we conclude from the IFT

that around every solution to g(x) = 1, one variable can locally be written as a

function of the two other variables. Let’s take (0,
√

3, 0). The IFT tells us there is

a neighbourhood around (0,
√

3, 0), where x2 can be written as a function of x1 and

x3, i.e. x2 = ϕ(x1, x3). For the derivative of ϕ in (0, 0), we find that

Dϕ(0, 0) = −
(

2x2

3

)−1
[

2x1

12
2x3

27

]

∣

∣

∣
(x1,x2,x3)=(0,

√
3,0)

= −1
2

√
3
[

0 0
]

=
[

0 0
]

.

In general there are several ways to write this system of equations as a function of

two variables. Consider, for example, the point (−2, 1,−3). Here we could, locally,

write x1 = ϕ1(x2, x3), x2 = ϕ2(x1, x3), or x3 = ϕ3(x1, x2), for certain ϕ1, ϕ2, and

ϕ3. It will turn out later that the precise choice is irrelevant for solving optimization

problems (although a clever choice can make computations easier).

A final reminder: the IFT applies locally! Even if the Jacobian has full row-rank

for every solution x with the same set of linearly independent columns of Dg, this

does not imply that the function ϕ is the same.

6 Optimization of a Function on Rn with Equality Con-

straints

In this section we consider the following problem.

Problem 3. Let f : S → R be differentiable, with S ⊆ Rn open. Find the location

and type of the optima of f on S, given the constraint that x ∈ S satisfies gi(x) = bi,

i = 1, . . . ,m, where all gi are C1. We assume that m < n.
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let us first look at some classical examples from economics and operations re-

search before delving into the mathematics.

Example 6.1 (Utility maximization). Consider a consumer who has to choose a

“bundle” of goods from a set T ⊆ R
n.4 Economists assume that this consumer

tries to maximize her “utility” (a fancy word for “well-being”), which is given by

some function U : T → R, called the utility function.5 Obviously, the consumer can

only buy bundles that she can afford, i.e. x ∈ T should be such that it satisfies the

budget constraint p⊤x = b, where p denotes the vector of prices for each good, and b

denotes the consumer’s budget. So, the consumer’s problem is to solve the problem

maximize U : T → R

such that p⊤x = b.

Example 6.2 (Inventory management). A firm has to determine how many times

a year (denoted by the variable x2) a certain quantity of a good (denoted by x1)

has to be taken into its inventory to satisfy a certain demand d. It is assumed that

between two orders, the inventory decreases with a constant speed until nothing is

left. The average inventory over, say, a year is then 1
2x1, with unit cost c1. Placing

an order incurs costs c2. The firm’s choice is now determined by minimizing the

total costs under the condition that demand is satisfied:

minimize 1
2c1x1 + c2x2

such that x1x2 = d.

Remark 6.1. In both examples it is, of course, implicitly assumed that x ≥ 0. We

will discuss this constraint in more detail in the next Section.

To solve the basic problem of this section we will, in fact, reduce it to a problem

of optimization without constraints. We can then use Theorem 4.1 to determine the

stationary points of that reduced problem. This reduction can be done in two ways.

Firstly, it can, sometimes, be achieved via direct substitution of the constraints in

the objective function (i.e. the function which is to be optimized). If this method

fails, a more general method can be found, which uses an indirect substitution of the

constraints in the objective function via the implicit function theorem (Theorem 5.1).

4This could be yourself walking through the supermarket trying to buy your groceries. A bundle

of goods is then nothing more than a list of the goods you have put in your basket.
5later in the course we will build an axiomatic theory of preferences leading to such utility

functions.
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6.1 The substitution method

The basic idea of the substitution method is to solve the constraints explicitly. If

this can be done, we can immediately substitute the m conditions in the objective

function, which then becomes a function of n−m variables. The analysis of Section 4

can then immediately be applied. The advantage of this method is that is quick and

intuitively appealing. The disadvantage is that is does not always work. The method

will be illustrated with two examples.

Example 6.3. Consider the problem

optimize f(x1, x2, x3) := x2
1 + x2

2 + x2
3

such that g1(x1, x2, x3) := x1 + 2x2 + x3 = 1

g2(x1, x2, x3) := 2x1 − x2 − 3x3 = 4.

From the constraints we can, for example, solve x1 and x2 explicitly as functions of

x3, since it holds that
[

1 2

2 −1

][

x1

x2

]

=

[

1 − x3

4 + 3x3

]

,

which implies that

[

x1

x2

]

=

[

1 2

2 −1

]−1 [

1 − x3

4 + 3x3

]

= −1

5

[

−1 −2

−2 1

] [

1 − x3

4 + 3x3

]

=

[

9
5 + x3

−2
5 − x3

]

.

Substitution in the objective function then gives the reduced optimization problem

optimize F (x3) := (9/5 + x3)
2 − (2/5 + x3)

2 + x2
3.

The stationary points are found from

F ′(x3) = 0 ⇐⇒ 2(9/5 + x3) − 2(2/5 + x3) + 2x3 = 0 ⇐⇒ x3 = −7/10.

Furthermore, F ′′(x3) = 2 > 0. Therefore, f(11/10, 3/10,−7/10) is a global strict

minimum.

Example 6.4. Consider the problem

optimize f(x1, x2, x3) := x1x2

such that g1(x1, x2, x3) := x1 = 12 − x2
2

g2(x1, x2, x3) := x2
2 + x2

3 = 1.

From g2 it follows that |x2| =
√

1 − x2
3 ≤ 1 and x2

3 = 1 − x2
2. Substitution of g1 in

the objective function gives

F (x2) := (12 − x2
2)x2.
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So, the optimization problem is equivalent with the following one:

optimize F (x2) := (12 − x2
2)x2

such that |x2| ≤ 1.

The stationary points are given by

F ′(x2) = 0 ⇐⇒ −2x2
2 + 12 − x2

2 = 0 ⇐⇒ x2
2 − 4 = 0 ⇐⇒ x2 = 2 ∨ x2 = −2.

These do not satisfy the condition and, therefore, F does not have stationary points.

What about the boundary points x such that |x| = 1? Note that F ′(x2) > 0, for all

x ∈ [−1, 1]. Therefore, F attains a strict minimum at x = −1 and a strict maximum

at x = 1. To conclude, f(11,−1, 0) is a strict minimum and f(11, 1, 0) is a strict

maximum.

6.2 The method of Lagrange

If we cannot explicitly solve the constraints, it is still – under a mild regularity

condition – possible to solve the constraints (locally) implicitly via the implicit

function theorem. That is, locally it holds that x(2) = ϕ(x(1)) for some unknown

function ϕ. By substituting this function in the objective function we get a reduced

objective function F that only depends on x(1). By using the result that Dϕ =

−(Dg(2))−1Dg(1), we can compute DF (x(1)), without knowing ϕ:

DF (x(1)) = Df

[

I

Dϕ

]

=

[

I

−(Dg(2))−1Dg(1)

]

.

We will make this procedure formal in the following theorem.

Theorem 6.1 (Lagrange). Let f, g1, . . . , gm : T → R be C1 functions on an open set

T ⊆ Rn, with m < n. Let a be a solution of system (5). If a is an optimum-location

for f under the constraint g(x) = b, and if the Jacobian matrix Dg(a) has rank m,

then there exists a unique vector λ ∈ Rm, such that

Df(a) − λ⊤Dg(a) = Df(a) −
m
∑

i=1

λi ·Dgi(a) = 0⊤. (6)

Proof. Assume (wlog) that x(1) = (x1, . . . , xn−m) and x(2) = (xn−m+1, . . . , xn).

From Theorem 5.1 it follows that there exists a neighbourhood Uε(a) of Rn, such

that for all x ∈ Uε(a) it holds that

x(2) = ϕ(x(1)),
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for some function ϕ : Rn−m → R
m. Substitution in the objective function leads to

a new objective function on Uε(a):

F (x(1)) := f(x(1), ϕ(x(1))).

After defining

Df (1) :=
[

fx1
· · · fxn−m

]

, and Df (2) :=
[

fxn−m+1
· · · fxn

]

,

applying Theorems 4.1 and 5.1 gives

DF (a) = Df (1)(a) +Df (2)(a)Dϕ(a)

= Df (1)(a) −Df (2)(a) · (Dg(2))−1 ·Dg(1)(a)

= 0⊤.

Define λ ∈ Rm as

λ⊤ = Df (2)(a) · (Dg(2))−1,

which turns the first-order condition into

DF (a) = Df (1)(a) − λ⊤Dg(1)(a).

Furthermore, by post-multiplying the definition of λ by Dg(2)(a), and rearranging

we find that

Df (2)(a) − λ⊤Dg(2)(a) = 0⊤.

The equation (6) now follows form observing that

Dg(a) =
[

Dg(1)(a) Dg(2)(a)
]

.

Remark 6.2. If n = 2 and m = 1, (6) becomes

[

fx1
(a) fx2

]

− λ
[

gx1
(a) gx2

(a)
]

=
[

0 0
]

,

or

fx1
(a) − λgx1

(a) = 0

fx2
(a) − λgx2

(a) = 0.

Note that if we define the function L : Rn+m → R, as

L (x, ζ) := f(x) −
m
∑

i=1

ζi (gi(x) − bi) ,
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the equations (6) and (5) are precisely the necessary conditions for (a, λ) to be a

stationary point of L .

A straightforward way of obtaining the necessary conditions (6) and (5) is now

to introduce the function L belonging to the problem at hand and to find the

stationary points of L . This leads to the system of equations

Df(x) − ζ⊤ ·Dg(x) = 0⊤

g(x) = b.
(7)

Since the function L plays such an important role, it gets a special name.

Definition 6.1 (Lagrangian). The Lagrangian belonging to Problem 3 is the func-

tion L : Rn ×Rm → R defined by

L (x, ξ) = f(x) −
m
∑

i=1

ζi (gi(x) − bi) .

The ξi in Definition 6.1 are called the Lagrange multipliers. In order to find the

optimum locations for Problem 3 we get the following algorithm.

Algorithm 3. 1. Determine the solutions to system (7).

2. Determine all x that satisfy (5) and for which |Dg(x)| < m.

The next problem, of course, is to find the optima from all these potential loca-

tions and to determine what kind of optima they represent. For the points that are

found via Theorem 6.1 we have the following results.

Theorem 6.2. Let f, g1, . . . , gm : T → R be C2 functions, with T ⊆ R
n open. If

(a, λ) satisfies (7), |Dg(a)| = m, and

B⊤AB is negative (positive) definite, where

A := HL (a), and

B :=

[

In−m

−(Dg(2)(a))−1Dg(1)(a)

]

,

then f(a) is a strict maximum (minimum) of f under the condition g(x) = b.

Proof. We give a proof for the case n = 2 and m = 1. The general proof is

analogous, but involves tedious notation. It follows, with the notation from the

proof of Theorem 6.1 that, with F (x1) = f(x1, ϕ(x1)):

DF (a1) = fx1
(a1, ϕ(a1)) + fx2

(a1, ϕ(a1)) · ϕ(a1) = 0.
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From Theorem 4.2 we know that f(a) is a strict maximum (minimum) if Hf(a) is

negative (positive) definite. Application of the chain rule gives that

HF (a1) = fx1x1
+ fx1x2

ϕ′ + fx1x1
ϕ′ + fx2x2

(ϕ′)2 + fx2
ϕ′′.

Since g(x1, ϕ(x1)) = b, it holds that Dg = 0. In other words,

gx1
+ gx2

ϕ′ = 0.

Differentiating this expression wrt x1 we see that

gx1x1
+ gx1x2

ϕ′ + gx2x1
ϕ′ + gx2x2

(ϕ′)2 + gx2
ϕ′′ = 0

⇐⇒ ϕ′′ = −g−1
x2

[

1 ϕ′
]

[

gx1x1
gx1x2

gx2x1
gx2x2

][

1

ϕ′

]

.

Substituting this back in HF gives

HF =
[

1 ϕ′
]

[

fx1x1
fx1x2

fx2x1
fx2x2

][

1

ϕ′

]

− fx2

[

1 ϕ′
]

[

gx1x1
gx1x2

gx2x1
gx2x2

][

1

ϕ′

]

=B⊤HLB,

from which the result follows by applying Theorem 4.2.

Remark 6.3. This condition can also be interpreted as follows: the matrix HL (a)

must be negative (positive) definite on the null-space of the matrix Dg(a).

For boundary points, points where f is non-differentiable, or where |Dg(a)| < m,

we can, in general, not say much more then that further investigation is needed.

Example 6.5. Consider the problem

optimize f(x1, x2) := x2
1 + x2

2, x1, x2 ∈ R
such that g(x1, x2) := x2

1 + x1x2 + x2
2 = 3.

The Lagrangian of this problem equals

L (x1, x2, ξ) = x2
1 + x2

2 − ζ(x2
1 + x1x2 + x2

2 − 3),

which gives first-order conditions

L

x1
= 2x1 − λ(2x1 + x2) = 0

L

x2
= 2x2 − λ(x1 + 2x2) = 0

L

ζ
= x2

1 + x1x2 + x2
2 − 3 = 0,

23



which gives the stationary points

(1, 1) and (−1,−1), with λ = 2/3 and

(
√

3,−
√

3) and (−
√

3,
√

3), with λ = 2.

Note that

Dg(x) =
[

2x1 + x2 2x2 + x1

]

,

so that |Dg(x)| = 1, for all (x1, x2) 6= (0, 0). Since g(0, 0) 6= 3, we can say that

|Dg(x)| = 1, for all (x1, x2) that satisfy the condition. The stationary points above

are, therefore, the only possible optimum locations. We now find that

B⊤AB =
[

x1 + 2x2 −2x1 − x2

]

[

2 − 2λ −λ
−λ 2 − 2λ

][

x1 + 2x2

−2x1 − x2

]

· 1

(x1 + 2x2)2
.

In the stationary points (
√

3,−
√

3) and (−
√

3,
√

3) with λ = 2, this quadratic form

equals B⊤AB = −8 < 0, implying that f(
√

3,−
√

3) and f(−
√

3,
√

3) are strict local

maxima. Furthermore, for the stationary points (1, 1) and (−1,−1) with λ = 2/3,

this quadratic form equals B⊤AB = 8 > 0, implying that f(1, 1) and f(−1,−1) are

strict local minima.

Example 6.6. Consider the problem

optimize f(x1, x2, x3) := x1 + x2 + x3, x1, x2, x3 ∈ R
such that g1(x1, x2, x3) := x1 − x2 − x3 = 0

g2(x1, x2, x3) := x2
1 + x2

2 + x2
3 = 6.

First note that

Dg(x) =

[

1 −1 −1

2x1 2x2 2x3

]

.

Hence,

|Dg(x)| =

∣

∣

∣

∣

∣

1 −1 −1

0 2(x1 + x2) 2(x1 + x3)

∣

∣

∣

∣

∣

.

From this we see that |Dg(x)| < 2 iff x2 = −x1 and x3 = −x1. This, however, leads

to a system of equations g1, g2 with no solutions. So, for all (x1, x2, x3) such that

g1(x1, x2, x3) = 0 and g2(x1, x2, x3) = 6, it holds that |Dg(x)| = 2. In other words,

we can use the Lagrangian, which is given by

L (x1, x2, x3, ζ1, ζ2) = x1 + x2 + x3 − ζ1(x1 − x2 − x3) − ζ2(x
2
1 + x2

2 + x2
3 − 6).
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The necessary conditions for an optimum are, therefore,

(i) 1 − λ1 − 2λ2a1 = 0

(ii) 1 + λ1 − 2λ2a2 = 0

(iii) 1 + λ1 − 2λ2x3 = 0

(iv) x1 − x2 − x3 = 0

(v) x2
1 + x2

2 + x2
3 = 6

From (ii) and (iii) we find λ2(x2−x3), so that λ2 = 0∨x2 = x3. Consider two cases.

1. λ2 = 0.

Substitution in (i), (ii), and (iii) gives a system with no solutions.

2. x2 = x3.

From (iv) it follows that x1 = 2x2, so that (v) gives that x2
2 = 1. In other words, we

find the stationary points (2, 1, 1), with λ2 = 1/3, and (−2,−1,−1), with λ2 = −1/3.

3. Let a = (2, 1, 1). Then

Dg(a) =
[

Dg(2) Dg(1)
]

=

[

1 −1 −1

4 2 2

]

⇒− (Dg(2)(a))−1Dg(1) = −
[

1 −1

4 2

]−1 [

−1

2

]

=

[

0

−1

]

⇒B⊤AB =
[

0 −1 1
]









−2ζ2 0 0

0 −2ζ2 0

0 0 −2ζ2









ζ2=1/3









0

−1

1









= −4

3
< 0.

So, f(2, 1, 1) is a strict local maximum.

4. Let a = (−2,−1,−1). Then

Dg(a) =
[

Dg(2) Dg(1)
]

=

[

1 −1 −1

−4 −2 −2

]

⇒− (Dg(2)(a))−1Dg(1) = −
[

1 −1

−4 −2

]−1 [

−1

−2

]

=

[

0

−1

]

⇒B⊤AB =
[

0 −1 1
]









−2ζ2 0 0

0 −2ζ2 0

0 0 −2ζ2









ζ2=−1/3









0

−1

1









=
4

3
> 0.

25



So, f(−2,−1,−1) is a strict local minimum.

For the investigation of the global character of optima we present two theorems.

The first is by applying Weierstrass’s theorem. A second criterion is given by the

following theorem.

Theorem 6.3. Let f, g1, . . . , gm : T → R be C1 functions, with T ⊆ R
n open. If

a and λ satisfy (7), and the Lagrangian is concave (convex), then f(a) is a global

maximum (minimum) for f under the condition g(x) = b.

Proof. Since a and λ satisfy (7), it holds that a is a stationary point for the

Lagrangian L . From Theorem 4.2 it follows that L (a) is a global maximum (min-

imum) for L . In particular, it holds that L (x) ≤ (≥)L (a), for all x such that

g(x) = b. Since g(a) = b, it follows that f(x) ≤ (≥)f(a), for all x such that

g(x) = b.

Example 6.7. Let us reconsider Example 6.6. From g2 it follows that |xi| ≤
√

6,

all i = 1, 2, 3. So, the area over which optimization takes place is bounded. The

point (2, 1, 1) satisfies both g1 and g2, so the domain is also non-empty. Finally,

the domain is closed (it is an ellipse). According to Weierstrass, f , therefore, has

a global maximum and a global minimum on the domain. The only candidates are

f(2, 1, 1) and f(−2,−1, 1), respectively.

Finally we say something about the meaning of the Lagrange multipliers ζi,

i = 1, . . . ,m. The optimal value f∗ of the objective function can be seen as a

function of the values bi, i = 1, . . . ,m. In management applications, for example,

these bi’s represent production inputs. The question then is whether the firm should

increase the inventory of, say, input j, i.e. should bj be increased? The boundary

case between a “yes” and a “no” answer occurs if the marginal improvement in the

optimal value f∗ equals the price of an additional unit of the input. This marginal

improvement turns out to be equal to the Lagrange multiplier ζj. For this reason,

the Lagrange multipliers are also called shadow prices. They are an indication of

the change in f∗, resulting from a marginal change in the bi’s.

Theorem 6.4. Let f, g1, . . . , gm : T → R be C1 functions, with T ⊆ Rn open. Let

f(a) be an optimum of f under the condition g(x) = b0, with appropriate Lagrange

multipliers λ, and let
∣

∣

∣

∣

∣

HL (a) −Dg(a)⊤

Dg(a) 0

∣

∣

∣

∣

∣

6= 0.

Then it holds that, for all i = 1, . . . ,m,

f∗bi
= λi.
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Proof. Consider the following system of n+m equations in 2m+ n unknowns:

Df(x)⊤ −Dg(x)⊤ζ = 0

g(x) − b = 0.

The point (b0, a, λ) is a solution to this system, since (a, λ) is a stationary point of

L , belonging to the problem with constraint g(x) = b0. Since the matrix

[

0 HL −Dg⊤

−I Dg 0

]

,

has rank n +m in (b0, a, λ), the implicit function theorem tells us that in a neigh-

bourhood Uε(b0, a, λ), the variables x and ζ can be written as differentiable functions

of b:

x = ϕ(b), and ζ = ψ(b).

If we implicitly differentiate the system g(x) = b with respect to bi (for fixed i) we

then get

Dgj(x)ϕbi
(b) =







1 if j = i

0 if j 6= i
, j = 1, . . . ,m.

So, for all i = 1, . . . ,m, it holds that

f∗bi
(b0) = Df(a)ϕbi

(b0)

=

m
∑

j=1

λjDgj(a)ϕbi
(b0)

= λi.

Remark 6.4. This theorem will also turn out to play a crucial role in the proof of

the Kuhn-Tucker theorem in the next section.

7 Optimization of a Function on R
n with Inequality

Constraints

In this section we consider the following problem.

Problem 4. Let f : S → R be differentiable, with S ⊆ Rn open. Find the location

of the maxima of f on S, given the constraint that x ∈ S satisfies gi(x) ≤ bi,

i = 1, . . . ,m, where all gi are C1. We assume that m < n.
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Remark 7.1. The problem above encompasses all types of optimization problems

with inequalities. To find the minimum locations of f , we essentially look for max-

imum locations of −f . Inequalities of the type g(x) ≥ 0 can be transformed into

−g(x) ≤ −b. Finally, equalities of the type g(x) = b can be transformed into g(x) ≤ b

and −g(x) ≤ −b. (This last transformation is usually not advisable; see a later re-

mark).

To solve the above problem we, again, first formulate a theorem that reduces

the number of potential points where a maximum can be attained. We need the

following terminology. The i-th constraint in Problem 4 is called a binding constraint

in a ∈ Rn if gi(a) = bi.

Theorem 7.1 (Kuhn-Tucker). Let f, g1, . . . , gm : Rn → R be C1 functions, and let

a ∈ Rn be a solution to Problem 4. If the gradient vectors of the binding constraints

are independent, then there exists a vector λ ∈ Rm, λ ≥ 0, such that

Df(a) − λ⊤Dg(a) = 0⊤ (8)

λ⊤ (g(a) − b) = 0. (9)

Proof. Choose λi = 0 if the i-th constraint is not binding. The binding constraints

give a maximization problem with equality constraints that satisfies the conditions

of Theorem 6.1. For the corresponding λi’s, choose the Lagrange multipliers of this

system. Obviously, this satisfies (8) and (9).

The only thing that remains to be shown is that λ ≥ 0. To establish this we

apply Theorem 6.1 to the maximization problem with just the binding constraints.

To keep things simple let us assume that all conditions of Theorem 6.3 are satisfied.6

Suppose that λi < 0. Theorem 6.3 then gives that

f∗bi
(b) = λi < 0,

implying that f∗ is a strictly decreasing function of bi in a neighbourhood of b. So,

there exists ε > 0, such that

f∗(b− εei) > f∗(b).

So, the system with a more strict condition g(x) ≤ b− εei, has a higher maximum

value f∗. This is a contradiction.

Remark 7.2. We make two remarks on this theorem.

6This is not needed, but the proof becomes quite tedious without it.
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1. If the conditions of Theorem 7.1 are satisfied, then the following system of

equations gives a collection of possible maximum locations.

Df(x) − ζ⊤Dg(x) = 0⊤

g(x) ≤ b

ζ ≥ 0

ζ⊤(g(x) − b) = 0

(10)

2. If, apart from inequality constraints, there are also equality constraints, say

gi(x) = bi, for i = 1, . . . , k

gi(x) ≤ bi, for i = k + 1, . . . ,m

then we can use a combination of Theorems 6.1 and 7.1. The system to be

solved is then determined by (7) for 1 ≤ i ≤ k, and (10) for k + 1 ≤ i ≤ m.

Algorithm 4. The set of possible maximum locations for Problem 4 is the set con-

taining:

1. all solutions to (10),

2. all points where at least one constraint is binding en the corresponding gradient

vectors are linearly dependent.

Can we, from this set of points, find the maximum locations? As usual we might

be able to use Weierstrass (Theorem 4.3), or use the fact that f is strictly concave

(Theorem 4.4). We also have the following result.

Theorem 7.2. Consider the Lagrangian L (x, ζ) = f(x) − ζ⊤(g(x) − b) in a sta-

tionary point (a, λ) ∈ Rn ×Rm of (10). If (a, λ) satisfies

(i) L (x, λ) ≤ L (a, λ), all x,

(ii) g(a) ≤ b,

(iii) λ ≥ 0,

(iv) λ⊤(g(a) − b) = 0,

then f(a) is a global maximum for Problem 4.

Remark 7.3. Condition (iv) is called the complementary slackness condition.
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Proof. Note that

f(x) − f(a) ≤
(i)
λ⊤(g(x) − g(a))

=
(iv)

λ⊤(g(x) − b)

≤
(iii)

0, all x with g(x) ≤ b.

Condition (i) implies that a is a maximum location for the Lagrangian L . By

applying Theorem 4.2 to L whether a candidate maximum location satisfies (i). The

sufficient conditions in Theorem 7.2 can not always be used. There exist stronger

ones, but we will not discuss them here.

Remark 7.4. For applications of the theory in this section one could interpret the

quantities as follows:

x: production levels,

g(x)x: used levels of production inputs,

b: levels of production inputs,

λ: shadow prices of inputs,

f(x): total profits.

Finally, three examples of the theory.

Example 7.1. Consider the problem

maximize f(x1, x2) := −x2
1 − x1x2 − x2

2

such that g1(x1, x2) := x1 − 2x2 ≤ −1

g2(x1, x2) := 2x1 + x2 ≤ 2

g3(x1, x2) := −x1 ≤ 0

g4(x1, x2) := −x2 ≤ 0.

The Jacobian matrix of g equals

Dg(x) =













1 −2

2 1

−1 0

0 −1













.
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System (10) becomes






−2x1 − x2 − ζ1 − 2ζ2 + ζ3 = 0

−x1 − 2x2 + 2ζ1 − ζ2 + ζ4 = 0
(11)































x1 − x2 ≤ −1

2x1 + x2 ≤ 2

x1 ≥ 0

x2 ≥ 0

(12)

ζi ≥ 0, i = 1, 2, 3, 4 (13)






























ζ1(x1 − 2x2 + 1) = 0

ζ2(2x1 + x2 − 2) = 0

ζ3(−x1) = 0

ζ4(−x2) = 0.

(14)

From the first and third inequalities of (12) it follows that x2 > 0. From (14) we

then obtain: ζ4 = 0. From (11), x1 ≥ 0, x2 > 0, and ζ2 ≥ 0, it then follows that

ζ1 > 0 and ζ3 > 0. Complementary slackness then gives






x1 − 2x2 + 1 = 0

−x1 = 0
⇐⇒ (x1, x2) = (0, 1/2).

This implies that the second condition is not binding and, hence, that z2 = 0.

Plugging all this back into (11) then reveals that ζ1 = 1/2 and ζ3 = 1. So, there is

only one point (a, λ) that satisfies 10, with

a = (0, 1/2), and λ = (1/2, 0, 1, 0).

Are there other points that could be maximum locations? First, notice that at

most two constraints can be binding. Since every k × 2-submatrix of Dg has full

rank (k = 1, 2), there are no other candidate locations.

For (a, λ), the corresponding Lagrangian equals

L (x, λ) = −x2
1 − x1x2 − x2

2 − 1
2x1 + x2 − 1

2 + x1.

The Hessian of this function is

HL (x, λ) =

[

−2 −1

−1 −2

]

,

which is negative definite. So, a is a maximum location for L (x, λ) (according to

Theorem 4.2). So, Theorem 7.2 tells us that f(a) is a maximum.
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Example 7.2. An electricity utility with variable capacity k, partitions a day in

different periods 1, 2, . . . , n and delivers, in those periods, electricity levels x1, . . . , xn,

at varying prices p1, . . . , pn. Suppose that the quantities a1, . . . , an, and the capacity

k0 have been chosen such that it maximizes profits. If the function c(·) denotes the

costs, accruing from levels x1, . . . , xn, and the function d(·) denotes the costs of

keeping capacity k, then a1, . . . , an, k0 is a solution to the problem:

maximize p⊤x− c(x) − d(k)

such that xi ≤ k, i ∈ {1, 2, . . . , n}.

System (10) then becomes

p−Dc(x)⊤ − λ = 0 (15)

−d′(k) +
n
∑

i=1

λi = 0 (16)

xi ≤ k, i = 1, . . . , n

λi ≥ 0, i = 1, . . . , n

λi(xi − k) = 0, i = 1, . . . , n (17)

From (17) it follows that either xi = k, or λi = 0. If λi = 0, it follows form (15) that

pi = cxi
(x).

In words: if capacity is not fully used, then the price of electricity equals the marginal

costs of delivering it. If xi = k, then (15) yields

pi = cxi
(x) + λi.

In words: if capacity is fully used (peak hours), then the price of electricity equals

the marginal costs of delivering it plus an additional premium. Form (16) one can

see that the premium is related to the marginal cost of keeping up the capacity k.

So, the costs of keeping capacity k are fully borne by customers who buy electricity

during the peak hours.

Finally, note that Dg(x) = I. This implies that every number of binding con-

straints has linearly independent gradient vectors. This implies that the only can-

didate maximum locations are given by the above system.

Example 7.3. Let

V = {(x,x2) ∈ R2|x2
1 + x2

2 ≤ 9, x2
1 − x2

2 ≤ 1}.
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Suppose we want to maximize x2
1x2 over V . We can write this as a maximization

problem

maximize f(x1, x2) := x2
1x2

such that g1(x1, x2) := x2
1 + x2

2 ≤ 9

g2(x1, x2) := x2
1 − x2

2 ≤ 1.

Note that V is non-empty, bounded, and closed. Since f is continuous, Weierstrass

tells us that f attains a maximum on V . Consider the Lagrangian

L (x, ζ) = x2
1x2 − ζ1(x

2
1 + x2

2 − 9) − ζ2(x
2
1 − x2

2 − 1).

This leads to system (10):

2x1x2 − 2ζ1x1 − 2ζ2x1 = 0 (18)

x2
1 − 2ζ1x2 + 2ζ2x2 = 0 (19)

x2
1 + x2

2 ≤ 9 (20)

x2
1 − x2

2 ≤ 1 (21)

ζ1 ≥ 0 (22)

ζ2 ≥ 0 (23)

ζ1(x
2
1 + x2

2 − 9) = 0 (24)

ζ2(x
2
1 − x2

2 − 1) = 0 (25)

Consider the following four cases.

Case 1. Neither of the two constraints is binding. Therefore, ζ1 = ζ2 = 0. Accord-

ing to (19) it then follows that x2 = 0, implying that f = 0.

Case 2. The second constraint is binding, the first is non-binding. So, ζ1 = 0

and ζ2 6= 0. From (18) it then follows that 2x1(x2 − ζ2) = 0, so that x1 = 0 or

x2 = ζ2. If x1 = 0, then f = 0. If x2 = ζ2, then (19) gives that x2
1 + 2ζ2

2 = 0,

which gives an inconsistent system. Finally, Dg2(x) = 2x1 − 2x2, so that |Dg2| < 1

if x1 = x2 = 0, which does not satisfy g2. So, step 2 from Algorithm 4 does not lead

to extra candidates.

Case 3. The first constraint is binding, the second is non-binding. Therefore,

ζ2 = 0 and ζ1 6= 0. From (18) it then follows that 2x1(x2 − ζ1) = 0, implying that

x1 = 0, or x2 = ζ1. If x1 = 0, the f = 0. If x2 = ζ1, we get from (19) that x2
1 = 2ζ2

1

and from (24) that x2
1 = 9 − ζ2

1 . This implies that ζ1 =
√

3, x2
1 = 6, and x2 =

√
3.
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But, these values do not satisfy (21). Finally, Dg1(x) = 2x1 +2x2, so that |Dg1| < 1

if x1 = x2 = 0, which does not satisfy g1. So, step 2 from Algorithm 4 does not lead

to extra candidates.

Case 4. Both constraints are binding, implying that ζ1 6= 0 and ζ2 6= 0. From (24)

and (25) we then find that x1 = ±
√

5 and x2 = ±2.

If x = (
√

5, 2), then (18) and (19) give that ζ1 = 13/8, ζ2 = 3/8, and f = 10.

If x = (−
√

5, 2), then (18) and (19) give that ζ1 = 13/8, ζ2 = 3/8, and f = 10.

If x = (
√

5,−2), then f = −10.

If x = (−
√

5,−2), then f = −10.

Note that

Dg(x) =

[

2x1 2x2

2x1 −2x2

]

.

So, |Dg(x)| < 2 iff −8x1x2 = 0, i.e. if x1 = 0 or x2 = 0. If x1 = 0, then g1 gives

that x2 = ±3. However, (0,±3), does not satisfy g2, so this does not give additional

candidates. Analogous computations reveal the same for x2 = 0.

So, all possible maximum locations are

{(0, x2), (
√

5, 2), (
√

5,−2), (−
√

5, 2), (−
√

5,−2)}.

Simple computations give that f attains the global maximum 10, at (
√

5, 2) and

(−
√

5, 2).
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