Exercises 1

Mathematical economics

1. Consider the function $f:(0, \infty) \rightarrow \mathbb{R}$, with

$$
f(x)= \begin{cases}x+1 & \text { if } 0<x \leq 1 \\ 1 & \text { if } x>1\end{cases}
$$

Show that this function has a global maximum and a global minimum, but that the conditions of the Weierstrass theorem are not satisfied.
2. Determine the optimum locations of the function $f:[0,2] \rightarrow \mathbb{R}$, where

$$
f(x)=\frac{x^{2}+1}{x}
$$

Also investigate their nature.
3. Consider the function $f:[0,2] \rightarrow \mathbb{R}$, with

$$
f(x)= \begin{cases}x^{2}-x+\frac{1}{4} & \text { if } 0 \leq x<1 \\ -x^{3}+\frac{3}{2} x^{2}-\frac{9}{4} x+3 \frac{1}{4} & \text { if } 1 \leq x \leq 2\end{cases}
$$

(a) Are the conditions of the Weierstrass theorem satisfied?
(b) Determine the location and the nature of the optimum points of f.
4. Consider the Cobb-Douglas function $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$, with

$$
f(x)=x_{1}^{\alpha} x_{2}^{\beta}, \quad \alpha, \beta>0, \quad \alpha+\beta \leq 1
$$

Let $a \in \mathbb{R}_{+}^{2}$ and define

$$
V=\left\{x \in \mathbb{R}_{+}^{2} \mid f(x) \geq f(a)\right\}
$$

(a) Show that f is concave on \mathbb{R}_{+}^{2}.
(b) Show that V is a convex set.
5. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, with

$$
f\left(x_{1}, x_{2}\right)=\left(x_{2}-x_{1}^{2}\right)\left(x_{2}-2 x_{1}^{1}\right)
$$

and the functions $g_{k}, h_{1}, h_{2}: \mathbb{R} \rightarrow \mathbb{R}$, with

$$
\begin{aligned}
g_{k}(x) & =f(x, k x), \quad k \neq 0 \\
h_{1}(x) & =f(x, 0) \\
h_{2}(x) & =f(0, x)
\end{aligned}
$$

Show that the functions g_{k}, h_{1}, h_{2} have a local minimum in 0 , but that $(0,0)$ is a saddle-point for f.
6. Determine the location and the nature of the optima of the following functions:
(a) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, with $f\left(x_{1}, x_{2}\right)=x_{1}^{4}+x_{2}^{4}-2 x_{1}^{2}+4 x_{1} x_{2}-2 x_{2}^{2}$,
(b) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, with $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+3 x_{1} x_{2}+3 x_{1} x_{3}+x_{2}^{3}+3 x_{2} x_{3}+x_{3}^{3}$.
7. Determine the location and the nature of the optima of the following functions:
(a) $f:[-1,1] \times[-1,1] \rightarrow \mathbb{R}$, with $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}^{2}$,
(b) $f:[-1,1] \times[-1,1] \rightarrow \mathbb{R}$, with $f\left(x_{1}, x_{2}\right)=x_{1}^{3}-3 x_{2}^{2}$.
8. Consider the function $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$, with

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}-3 x_{1}-2 x_{2} .
$$

Show that f is convex on \mathbb{R}_{+}^{2}, and determine the global minimum of f on \mathbb{R}_{+}^{2}.
9. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{1}-function, let $S \subset \mathbb{R}^{n}$ be a convex set, and let a be a boundary point of S. Prove that if a is a global maximum location for f on S, then it holds that

$$
D f(a) \cdot(a-x) \geq 0, \quad \text { for all } x \in S
$$

(Hint: consider the function $g:[0,1] \rightarrow \mathbb{R}$, with $g(\lambda)=f(a)-f(\lambda x+(1-\lambda) a)$.)

