Nash Equilibrium

- A game consists of
- a set of players
- a set of strategies for each player
- A mapping from set of strategies to a set of payoffs, one for each player
N.E.: A Set of strategies form a NE if, for player i, the strategy chosen by i maximises i's payoff, given the strategies chosen by all other players
- NE is the set of strategies from which no player has an incentive to unilaterally deviate
- NE is the central concept of noncooperative game theory l.e. situtations in which binding agreements are not possible

Example

Player 2
 C D

Player 1

C $(10,10)(0,20)$
 D

This is the game's payoff matrix.

Player A's payoff is shown first. Player B's payoff is shown second.

NE: (DD) $=(1,1)$

Another Example....

Player B

Two Nash equilibria:

$$
\begin{aligned}
& (U, L)=(3,9) \\
& (D, R)=(2,1)
\end{aligned}
$$

Applying the NE Concept

Modelling Short Run ‘Conduct’

Bertrand Competition
Cournot Competition
[Building blocks in modeling the intensity of competition in an industry in the short run]

Bertrand Price Competition

- What if firms compete using only price-setting strategies,?
- Games in which firms use only price strategies and play simultaneously are Bertrand games.

Bertrand Games (1883)

1. 2 players, firms \mathbf{i} and \mathbf{j}
2. Bertrand Strategy - All firms simultaneously set their prices.
3. Homogenous product
4. Perfect Information
5. Each firm's marginal production cost is constant at c.

Bertrand Games

$$
\begin{array}{ll}
\pi_{i}=0 & \text { if } p_{i}>p_{i} \\
\pi_{i}=1 / 2\left(p_{i}-c\right) Q & \text { if } p_{i}=p_{j} \\
\pi_{i}=\left(p_{i}-c\right) Q & \text { if } p_{i}<p_{j}
\end{array}
$$

- Q: Is there a Nash equilibrium?
- A: Yes. Exactly one.

All firms set their prices equal to the marginal cost c. Why?

Bertrand Games

Proof by Contradiction

- Suppose one firm sets its price higher than another firm's price.
- Then the higher-priced firm would have no customers.
- Hence, at an equilibrium, all firms must set the same price.

Bertrand Games

- Suppose the common price set by all firm is higher than marginal cost c .
- Then one firm can just slightly lower its price and sell to all the buyers, thereby increasing its profit.
- The only common price which prevents undercutting is c. Hence this is the only Nash equilibrium.

Illustration

Bertrand Paradox

- For $\mathrm{n}>=2$ with firms simultaneously setting prices, prices = marginal cost and profits are zero....... Perfectly competitive outcome is replicated
- Intuitive assumptionsurprising result!

- This result holds where firms have identical costs
- If firms have different costs, then there may or may not be a pure strategy equilibrium

If firms are capacity constrained, then a mixed strategy equilibrium results

- Edgeworth (1897) - Capacity Constraints

Neither firm can meet the entire market demand, but can meet half market demand.
Constant MC to a point, then decreasing returns
Under these conditions, Edgeworth cycle: prices fluctuate between high and low

Kreps \& Scheinkman (1983)

- If there is a two stage game,
- in which firms set capacity in stage 1
- And in stage 2, given their capacity, set price
- Then the Cournot result is observed

Differentiated Products resolve the Bertrand Paradox

- Differentiated Products allow price competing oligopolists to mark up

Cournot Competition (1838)

1. 2 Players (identical)
2. Cournot strategy - All firms simultaneously set their output
3. Homogenous product
4. Perfect Information
5. Linear demand
6. Constant MC

2 identical firms, linear demand, constant marginal cost

$$
\begin{aligned}
& P=a-Q=a-q_{1}-q_{2} \quad T C_{i}=c\left(q_{i}\right) \\
& \Pi_{1}=\left(a-q_{1}-q_{2}\right) \cdot q_{1}-c\left(q_{1}\right) \quad \text { Choose } \mathbf{q}_{1} \text { to } \max \pi_{1}, \text { given } \mathbf{q}_{2} \\
& \frac{\partial \Pi_{1}}{\partial q_{1}}=a-2 q_{1}-q_{2}-c=0 \\
& \quad q_{1}=\frac{a-q_{2}-c}{2} \quad \text { Higher } \mathbf{q}_{2}, \text { lower level } q_{1} \text { to } \max \pi_{1}
\end{aligned}
$$

Similarily, identical firms \Rightarrow

$$
q_{2}=\frac{a-q_{1}-c}{2} \quad q_{2}=R\left(q_{1}\right)
$$

- An equilibrium is when each firm's output level is a best response to the other firm's output level - then neither wants to deviate from its output level.
- A pair of output levels $\left(q_{1}{ }^{*}, q_{2}{ }^{*}\right)$ is a Cournot-Nash equilibrium if $\mathrm{q}_{1}{ }^{*}=\mathrm{R} 1\left(\mathrm{q}_{2}{ }^{*}\right)$ and $\mathrm{q}_{2}{ }^{*}=\mathrm{R} 1\left(\mathrm{q}_{1}{ }^{*}\right)$

Solve reaction curves to find cournot

$R_{1}\left(q_{2}\right)=R_{2}\left(q_{1}\right)=$
$q_{1}=\frac{a-q_{2}-c}{2} \Rightarrow q_{1}=\frac{a-\left(\frac{a-q_{1}-c}{2}\right)-c}{2}$
solving $: q_{1}^{*}=\frac{a-c}{3}$
identical firms : in equilibriu m
$q_{1}^{*}=q_{2}^{*}=\frac{a-c}{3}$ cournot nash equil
Total Cournot quantity $: \frac{2(a-c)}{3}$
Solve for price : $p=a-Q=\frac{(a+2 c)}{3}$

- Q: Are the Cournot-Nash equilibrium profits the largest that the firms can earn in total?
- A: Firms could earn higher profits if both agreed to set half the monopoly output (and thus earn half monopoly profit each)

HOWEVER

Collusive\Joint profit max output levels $q_{m 1} q_{m 2}$ not sustainable - incentives to unilaterally deviate - not a NE
if firm 1 continues to produce $q_{1}{ }^{m}$, firm 2's profit-maximizing response is q_{2} $=\mathbf{R}_{\mathbf{2}}\left(\mathrm{q}_{1}{ }^{\mathrm{m}}\right)$

$\mathbf{P}_{\text {monop }}>\mathbf{P}_{\text {cournot }}>P_{\text {perfcomp=bertrand }}$
$\mathbf{Q}_{\text {monop }}<\mathbf{Q}_{\text {cournot }}<\mathbf{Q}_{\text {perfcomp=bertrand }}$
$\pi_{\text {monop }}>\pi_{\text {cournot }}>\pi_{\text {perfcomp=bertrand }}$

Example:

$P=140-Q ; C_{i}=60\left(q_{i}\right) ;$
2 firms play Cournot. What are equilibrium outcomes?

$$
\begin{aligned}
& P=140-q_{1}-q_{2} \\
& \Pi_{1}=\left(140-q_{1}-q_{2}\right) \cdot q_{1}-60 q_{1} \\
& \frac{\partial \Pi_{1}}{\partial q_{1}}=140-2 q_{1}-q_{2}-60=0 \\
& \quad q_{1}=40-1 / 2 q_{2}
\end{aligned}
$$

and solving profit $\max q_{2}$, given q_{1}

$$
q_{2}=40-1 / 2 q_{1}
$$

solve reaction functions:
$q_{1}=40-\frac{1}{2} q_{2}$ and $q_{2}=40-\frac{1}{2} q_{1}$
$q_{1}=40-\frac{1}{2}\left(40-\frac{1}{2} q_{1}\right) \Rightarrow q_{1}^{*}=80 / 3=262 / 3$
identical firms : $q_{1}^{*}=q_{2}^{*}=262 / 3$
Total Cournot quantity : $160 / 3=531 / 3$
Solve for price : $p=140-Q=\frac{260}{3}=86 \frac{2}{3}$
Solveforpr fit : $\pi_{1}=\pi_{2}=$

Monopoly.... 1 firm

$$
\begin{aligned}
& P=140-q_{m} \\
& \Pi_{m}=\left(140-q_{m}\right) \cdot q_{m}-60 q_{m} \\
& \frac{\partial \Pi_{m}}{\partial q_{m}}=140-2 q_{m}-60=0 \\
& \quad q_{m}=40 \\
& p_{m}=140-Q=140-40=100
\end{aligned}
$$

> Perfect Competition (\& Bertrand)
> $P=M C=60$
> $P=a-Q$ so $Q=a-c=140-60=80$
> Profit $=p . q-c \cdot q=0$ since $p=c$

Shows $\quad \mathbf{Q}^{m}<\mathbf{Q}^{\mathbf{c}}<\mathbf{Q}^{\text {pc }}$
And
$\mathbf{P}^{\mathbf{m}}>\mathbf{P}^{\mathbf{c}}>\mathbf{P}^{\mathrm{pc}}$

Thus, Bertrand \rightarrow for $\mathrm{N}>$ or $=2$, get perfectly competitive outcomes

Can show that as $\uparrow \mathbf{N}$, cournot outcome \rightarrow perfectly competitive

N player Cournot

1. N Players (identical)
2. Cournot strategy-All firms simultaneously set their output
3. Homogenous product
4. Perfect Information
5. Linear demand
6. Zero Cost

$\mathbf{P}=\mathbf{a}-\mathbf{b Q} ; \quad Q=\sum_{i=1}^{N} q_{i}$
since \mathbf{N} firms are identical

$$
Q=N q_{i}
$$

$T C_{i}=0+0 q_{1} \quad$ so $c=0$
$\operatorname{Firm}_{\mathrm{i}}: \Pi_{i}=(a-b Q) \cdot q_{i}$

Note: if $y=b Q \cdot q_{i} \&$
$Q=q_{i}+q_{j}+\ldots+q_{n}$
(so $d Q / d q_{i}=1$)

$$
\begin{aligned}
& a-b\left(N q_{i}\right)-b q_{i}=0 \\
& a-b(1+N) q_{i}=0
\end{aligned}
$$

$$
\begin{aligned}
d y / d q_{i} & =b Q .1+b q_{i} \cdot d Q / d q_{i} \\
& =b Q+b q_{i}
\end{aligned}
$$

$$
q_{i}^{*}=\frac{a}{b(N+1)}
$$

$$
p_{i}^{*}=a-b \cdot N \cdot q_{i}=\frac{a}{(N+1)}
$$

$$
P=a / N+1
$$

$P(N)$ function links price cost margins to a given N

Entry?

Stage 1
(Long Run)

Stage 2
(Short Run)

The entry decision is a backward induction procedure

We return to modelling entry, where N is endogenous and depends on $\mathrm{P}(\mathrm{N})$ in the latter part of the course......

