Topic 2: Linear Economic Models

(i) Market Equilibrium
(ii) Market Equilibrium + Excise Tax

Lecture Notes:
sections 2.1 and 2.2

Jacques Text Book (edition 2):
section 1.2 – Algebraic Solution of Simultaneous Linear Equations

section 1.3 – Demand and Supply Analysis
ASIDE:
Solving Simultaneous Equations

⇒ Plot on a graph and then solve to find common co-ordinates…….

OR

⇒ Solve Algebraically

Eg.

\[
\begin{align*}
4x + 3y &= 11 & \text{eq.1} \\
2x + y &= 5 & \text{eq.2}
\end{align*}
\]

1. Express both eq. in terms of the same value of x (or y)

\[
\begin{align*}
4x &= 11 - 3y & \text{eq.1} \\
4x &= 10 - 2y & \text{eq.2'}
\end{align*}
\]
2. Substitute value of eq.1 into eq.2’
 \[11 - 3y = 10 - 2y \]

3. collect terms
 \[11 - 10 = -2y + 3y \]
 \[1 = y \]

4. now compute x
 \[4x = 10 - 2y \]
 \[4x = 10 - 2 = 8 \]
 \[x = 2 \]

5. check the solution
 \[\text{in both equations, when } x = 2, y = 1 \]
 \[\text{the two lines intersect at } (2,1) \]
Note that if the two functions do not intersect, then cannot solve equations simultaneously…..

\[x - 2y = 1 \quad \text{eq.1} \]
\[2x - 4y = -3 \quad \text{eq.2} \]

\textbf{Step 1}
\[2x = 2 + 4y \quad \text{eq.1'} \]
\[2x = -3 + 4y \quad \text{eq.2} \]

\textbf{Step 2}
\[2 + 4y = -3 + 4y \quad \text{BUT} \Rightarrow \]
\[2 + 3 = 0 \ldots \ldots \]

No Solution to the System of Equations
Solving Linear Economic Models

Market Equilibrium
Quantity Demanded = Quantity Supplied

Finding the equilibrium price and quantity levels.....

In general,

Demand Function: \(Q_D = a + bP \)
Supply Function: \(Q_S = c + dP \)

- Set \(Q_D = Q_S \) and solve simultaneously for \(P^e = (a - c)/(d - b) \)
- Knowing \(P^e \), find \(Q^e \) given the demand/supply functions
- \(Q^e = (ad - bc)/(d - b) \)
Eg.1

\[Q_D = 50 - P \] \hspace{1cm} (i)
\[Q_S = 20 + 2P \] \hspace{1cm} (ii)

\(\Rightarrow \) Set \(Q_D = Q_S \)

\[50 - P = 20 + 2P \]
\[3P = 30 \]
\[P = 10 \]

\(\Rightarrow \) Knowing \(P \), find \(Q \)

\[Q = 50 - P \]
\[= 50 - 10 = 40 \]

\(\Rightarrow \) Check the solution

i) 40 = 50 − 10 and (ii) 40 = 20 + (2*10)

In both equations if \(P=10 \) then \(Q=40 \)
Changes in Demand or Supply…

Shift the curves and results in a new equilibrium price and quantity

Section 2.2 Notes: Market Equilibrium + Excise Tax

Impose a tax t on suppliers per unit sold…….
Shifts the supply curve to the left

\[Q_D = a + bP \]
\[Q_S = d + eP \text{ with no tax} \]
\[Q_S = d + e(P-t) \text{ with tax } t \text{ on suppliers} \]

\[Q_D = 50 - P, \text{ and } Q_S = 20 + 2P \text{ becomes } \]
\[Q_S = 20 + 2(P-t) \]
Write Equilibrium P and Q as functions of t

\Rightarrow Set $Q_D = Q_S$

\[50 - P = 20 + 2(P-t)\]
\[30 = 3P - 2t\]
\[3P = 30 + 2t\]
\[P = 10 + \frac{2}{3}t\]

Knowing P, find Q

\[Q = 50 - P\]
\[= 50 - (10 + \frac{2}{3}t)\]
\[= 40 - \frac{2}{3}t\]
Comparative Statics: effect on P and Q of $\uparrow t$

(i) As $\uparrow t$, then $\uparrow P$ paid by consumers by $\frac{2}{3}t$

\Rightarrow remaining tax ($\frac{1}{3}$) is paid by suppliers

$$\text{total tax } t = \frac{2}{3}t + \frac{1}{3}t$$

Consumers pay \quad Suppliers pay

Price consumers pay $-$ **price suppliers receive** $= \text{total tax } t$

e.g. $t = £3$

Consumer P: £12 (pre-tax eq. $p + \frac{2}{3}t$)

Supplier P: £9 (pre-tax eq. $p - \frac{1}{3}t$)

(ii) and $\downarrow Q$ by $\frac{2}{3}t$, reflecting a shift to the left of the supply curve
Another Tax Problem….

\[Q_D = 132 - 8P \]
\[Q_S = 6 + 4P \]

(i) Find the equilibrium \(P \) and \(Q \).
(ii) How does a per unit tax \(t \) affect outcomes?
(iii) What is the equilibrium \(P \) and \(Q \) if unit tax \(t = 4.5 \)?
Solution…..

(i) Equilibrium values

⇒ Set \(Q_D = Q_S \)

\[
132 - 8P = 6 + 4P
\]

\[
12P = 126
\]

\[
P = 10.5
\]

⇒ Knowing \(P \), find \(Q \)

\[
Q = 6 + 4P
\]

\[
= 6 + 4(10.5) = 48
\]

Equilibrium values: \(P = 10.5 \) and \(Q = 48 \)
(ii) The comparative Statics of adding a tax……

\[
Q_D = 132 - 8P \\
Q_S = 6 + 4(P - t)
\]

\[\Rightarrow \quad \text{Set } Q_D = Q_S \\
132 - 8P = 6 + 4(P - t) \\
12P = 126 + 4t \\
P = 10.5 + \frac{1}{3} t
\]

\[\Rightarrow \quad \text{Knowing } P, \text{ find } Q \\
Q = 6 + 4[P - t] \\
= 6 + 4[(10.5 + \frac{1}{3} t) - t] \\
= 48 - \frac{8}{3} t
\]

Imposing \(t \) \(\Rightarrow \) \(\uparrow \) consumer \(P \) by \(\frac{1}{3} t \), supplier pays \(\frac{2}{3} t \), and \(\downarrow Q \) by \(\frac{8}{3} t \)
(iii) If per unit \(t = 4.5 \)

\[
P = 10.5 + \frac{1}{3}(4.5) = 12
\]

Consumer P: £12 (pre-tax eq. \(p + \frac{1}{3}t \))

Supplier P: £7.5 (pre-tax eq. \(p - \frac{2}{3}t \))

\[
Q = 48 - \frac{8}{3}(4.5) = 36
\]
Market Equilibrium and Income

Increase in Income Y => Shift Out of Demand Curve => ↑ Q_D and ↑ P

\[Q_D = a + bP + cY \]
\[Q_S = d + eP \]

Let,

\[Q_D = 200 - 2P + \frac{1}{2}Y \]
\[Q_S = 3P - 100 \]

Given the above Demand and Supply functions, what is the impact on the Market Equilibrium of Y increasing from 0 to 20?
\(\Rightarrow\) Set \(Q_D = Q_s\)

\[
200 - 2P + \frac{1}{2}Y = 3P - 100
\]

\[
5P = 300 + \frac{1}{2}Y
\]

\[
P = 60 + \frac{1}{10}Y
\]

\(\Rightarrow\) Knowing \(P\), find \(Q\)

\[
Q = 3(60 + \frac{1}{10}Y) - 100
\]

\[
= 80 + \frac{3}{10}Y
\]

As \(\uparrow Y\) \(\Rightarrow\) \(\uparrow P\) by \(\frac{1}{10}\) of \(\uparrow Y\), and \(\uparrow Q\) by \(\frac{3}{10}\) of \(\uparrow Y\)

What is equilibrium \(P\) and \(Q\) when \(Y = 20\)

\[
P = 60 + \frac{1}{10}Y
\]

\[
P = 60 + \frac{1}{10}(20) = 62
\]

\(i.e\ \uparrow P\) by \(\frac{1}{10}\) of \(20 = 2\)

\[
Q = 80 + \frac{3}{10}Y
\]

\[
Q = 80 + \frac{3}{10}(20) = 86
\]

\(i.e\ \uparrow P\) by \(\frac{3}{10}\) of \(20 = 6\)
Qd = 200 – 2P + \(\frac{1}{2} \) Y
Qs = 3P – 100

Finding Intercepts:
S (Q, P): (-100, 0) and (0, \(\frac{33}{3} \))

Y=0:
D1 (Q, P): (200, 0) and (0, 100)

Y=20:
D2 (Q, P): (210, 0) and (0, 105)