
Lecture # 12 - Derivatives of Functions of Two or More Vari-
ables (cont.)

Some Definitions: Matrices of Derivatives

• Jacobian matrix

— Associated to a system of equations

— Suppose we have the system of 2 equations, and 2 exogenous variables:

y1 = f1 (x1, x2)

y2 = f2 (x1, x2)

∗ Each equation has two first-order partial derivatives, so there are 2x2=4 first-order
partial derivatives

— Jacobian matrix: array of 2x2 first-order partial derivatives, ordered as follows

J =

 ∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2


— Jacobian determinant: determinant of Jacobian matrix

Example 1 Suppose y1 = x1x2, and y2 = x1 + x2. Then the Jacobian matrix is

J =

 x2 x1

1 1


and the Jacobian determinant is |J | = x2 − x1

— Caveat: Mathematicians (and economists) call ’the Jacobian’ to both the matrix and

the determinant
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— Generalization to system of n equations with n exogenous variables:

y1 = f1 (x1, x2)

y2 = f2 (x1, x2)
...

y2 = f2 (x1, x2)

Then, the Jacobian matrix is:

J =



∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

...
...

. . .
...

∂yn
∂x1

∂yn
∂x2

· · · ∂yn
∂xn
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• Hessian matrix:

— Associated to a single equation

— Suppose y = f (x1, x2)

∗ There are 2 first-order partial derivatives: ∂y
∂x1

, ∂y
∂x2

∗ There are 2x2 second-order partial derivatives: ∂y
∂x1

, ∂y
∂x2

— Hessian matrix: array of 2x2 second-order partial derivatives, ordered as follows:

H [f (x1, x2)] =


∂2y
∂x21

∂2y
∂x2∂x1

∂y2
∂x1∂x2

∂2y
∂x22


Example 2 Example y = x41 + x22x

2
1 + x32. Then the Hessian matrix is

H [f (x1, x2)] =

 12x21 + 2x22 4x1x2

4x1x2 2x21 + 6x2


— Young’s Theorem: The order of differentiation does not matter, so that if z =

h (x, y) :

∂

∂x

µ
∂z

dy

¶
=

∂

∂y

µ
∂z

∂x

¶
=

d2z

∂y∂x
=

d2z

∂x∂y
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— Generalization: Suppose y = f (x1, x2, x3, ..., xn)

∗ There are n first-order partial derivatives
∗ There are nxn second-order partial derivatives

— Hessian matrix: nxn matrix of second-order partial derivatives, ordered as follows

H [f (x1, x2, ..., xn)] =



∂2y
∂x21

∂2y
∂x2∂x1

· · · ∂2y
∂xn∂x1

∂2y
∂x1∂x2

∂2y
∂x22

· · · ∂2y
∂xn∂x2

...
...

. . .
...

∂2y
∂x1∂xn

∂2y
∂x2∂xn

· · · ∂2y
∂x2n
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Chain Rules for Many Variables

• Suppose y = f (x,w) , while in turn x = g (t) and w = h (t) . How does y change when t

changes?

dy

dt
=

∂y

∂x

dx

dt
+

∂y

∂w

dw

dt

• Suppose y = f (x,w) , while in turn x = g (t, s) and w = h (t, s) . How does y change when

t changes? When s changes?

∂y

∂t
=

∂y

∂x

∂x

∂t
+

∂y

∂w

∂w

∂t
∂y

∂s
=

∂y

∂x

∂x

∂s
+

∂y

∂w

∂w

∂s

• Notice that the first point is called the total derivative, while the second is the ’partial
total’ derivative

Example 3 Suppose y = 4x− 3w, where x = 2t and w = t2

=⇒ the total derivative dy
dt is

dy
dt = (4) (2) + (−3) (2t) = 8− 6t

Example 4 Suppose z = 4x2y, where y = ex

=⇒ the total derivative dz
dx is

dz
dx =

∂z
∂x

dx
dx +

∂z
∂y

dy
dx = (8xy) +

¡
4x2
¢
(ex) = 8xy + 4x2y =

4xy (2 + x)

Example 5 Suppose z = x2 + 1
2y
2 where x = st and y = t− s2

=⇒ ∂z
∂t =

∂z
∂x

∂x
∂t +

∂z
∂y

∂y
∂t = (2x) (s) +

1
2(2) (y) (1) = 2xs+ y = 2s2t+ t− s2

=⇒ ∂z
∂s =

∂z
∂x

∂x
∂s +

∂z
∂y

∂y
∂s = (2x) (t) +

1
2(2) (y) (2s) = 2xt+ 2sy = 2st

2 + 2st− 2s3
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Derivatives of implicit functions

• So far, we have had functions like y = f (x) or z = g (x,w) , where a (endogenous) variable is

expressed as a function of other (exogenous) variables =⇒ explicit functions. Examples:

y = 4x2, or z = 3xw + lnw

• Suppose we instead have a equation y2 − 2xy − x2 = 0. We can write F (y, x) = 0, but

we cannot express y explicitly as a function of x. However, it is possible to define a set of

conditions so that an implicit function y = f (x) exists:

1. The function F (y, x) has continuous partial derivatives Fy, Fx

2. Fy 6= 0

• Derivative of an implicit function. Suppose we have a function F (y, x) = 0, and we know

an implicit function y = f (x) exists. How do we find how much y changes when x changes?

(i.e., we want fx =
dy
dx)

— Find total differential for F (y, x) = 0 =⇒ Fy · dy + Fx · dx = d0 = 0

— Find total differential for y = f (x) =⇒ dy = fx · dx
— Replace dy = fx · dx into Fy · dy + Fx · dx = 0 :

Fy · dy + Fx · dx = 0

Fy · (fx · dx) + Fx · dx = 0

[Fy · fx + Fx] dx = 0

— Since dx 6= 0, then the term in brackets has to be zero:

Fy · fx + Fx = 0 =⇒ fx = −Fx
Fy

— Alternative notation:

dy

dx
= −

∂F
∂x
∂F
∂y

Example 6 F (y, x) = y2 − 2xy − x2 = 0. Then dy
dx = −

∂F
∂x
∂F
∂y

= −−2y−2x2y−2x = y+x
y−x

Example 7 F (y, x) = yx + 1 = 0. Then dy
dx = −

∂F
∂x
∂F
∂y

= −yx ln y
xyx−1 = −y

x ln y

6



• Generalization: One Implicit Equation

— Suppose F (y, x1, x2) = 0. Then

dy

dx1
= −

∂F
∂x1
∂F
∂y

dy

dx2
= −

∂F
∂x2
∂F
∂y

Example 8 Suppose y3x+ 2yw + xw2 = 0. Then

dy

dx
= −

∂F
∂x
∂F
∂y

= − y3 + w2

3y2x+ 2w

dy

dw
= −

∂F
∂w
∂F
∂y

= − 2y + 2xw
3y2x+ 2w

— Suppose F (y, x1, x2, x3, ..., xn) = 0. Then

dy

dxi
= −

∂F
∂xi
∂F
∂y

, for any i = 1, 2, 3, ..., n
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