## BKE Chapter 14

## Exercise 13

5\% annual coupon, 20 year maturity, YTM = 8\%, assume \$1000 Face Value.
a) HPR? One year horizon, and will sell at YTM = 7\% after year.

$$
P_{0}=50 / 1.08+50 /(1.08)^{2}+\ldots+50 /(1.08)^{19}+1000 /(1.08)^{20}=
$$

705.46

$$
P_{1}=50 / 1.07+50 /(1.07)^{2}+\ldots+50 /(1.07)^{19}+1000 /(1.07)^{19}=
$$

793.29

Thus, the HPR is given by the Present Value at year 1, i.e. 1 year has passed, of the coupon payments thus far plus the difference in the price the bond will trade at now to that at acquisition:

$$
\text { HPR }=[50+(793.29-705.46)] / 705.46=19.54 \%
$$

## Exercise 14

$7 \%$ semi-annual coupon (every 182 days), on 15. of Jan \& July. The TWSJ reports the 'ask’ as being 100:02\% of par on 30.01. What is the invoice price?

Price 100:02\% = 100 2/32\% = 1000.0625
Invoice Price $=$ reported price + accrued interest

$$
\begin{aligned}
& =1000.0625+(15 / 182) 70 / 2= \\
& =1000.0625+2.8846 \\
& =1002.9471
\end{aligned}
$$

## Exercise 15

Current yield is $\mathbf{9 \%}$ and YTM is $\mathbf{1 0 \%}$. Selling above or below par?

Current yield is annual income as percentage of price paid. If the current yield is less than the YTM then price appreciation must compensate for a lower current relative to lifetime yield. Thus, the bond must be selling below par.

## Exercise 16

Coupon more or less than $9 \%$ ?
Less. If C/P = 9\% and $\mathbf{P}<\mathbf{M}=>\mathbf{C} / \mathbf{M}<\mathbf{C} / \mathbf{P}=\mathbf{9 \%}$

Exercise 18
20 year zero coupon with YTM of $\mathbf{8 \%}$ and $\mathrm{M}=1000$.
Imputed interest income in first, second, and last year of bond's life?

Year until maturity Const. Yield Value Imputed Int.
$\mathbf{t}=\mathbf{0}$
20 $1000 / 1.08^{20}=214.55$
$t=1$
19
$t=2$
18
$t=19$
1
$t=20$
0
1000
74.07

Exercise 22
2-Year bond, $M=1000$, annual coupon of 100, and price is par value.

- What is the YTM?

If traded at par value, then the YTM must be the same as the coupon rate, i.e. $100 / 1000=10 \%$.

- Realised compound yield if the interest rate next year is a) $\mathbf{8 \%}$ b) $\mathbf{1 0 \%}$ c) $\mathbf{1 2 \%}$ ?

The realized compound yield is that effective annual growth rate that Equates the future value (including interest from reinvestment) of an income stream with the initial outlay; Here:
$1000(1+y)^{2}=[1000+100+100(1+r)]$,
where $y$ is the yield and $r$ is the rate of interest that applies to funds that can be reinvested (coupon payments) before the bond expires (here the interest earned on the first coupon payment)

| $\underline{\mathbf{r}}$ | Total proceeds | $y=\underline{\text { Realised YTM }=(\text { Proceeds } / 1000)-1}$ |  |
| :---: | :---: | :---: | :---: |
| 8 | 1208 |  | $(1208 / 1000)^{1 / 2}-1=9.91 \%$ |
| 10 | 1210 | $(1210 / 1000)^{1 / 2}-1=10 \%$ |  |
| 12 | 1212 | $(1212 / 1000)^{1 / 2}-1=10.09 \%$ |  |

Note, the Realised YTM equals the YTM if the reinvestment rate equals the coupon and the price is at par value.

Exercise 23
Zero-coupon (risk free) bond has YTM = Realised YTM. Why?

No coupons to re-invest, thus proceeds are independent of any interest rates for reinvestment.

Exercise 24
April 15; 10\% semi-annual coupon (15.1. and 15.07). In TWSJ price quoted as 101:04. If bought today, what price paid? invoice price =

101 4/32\% of par + accrued interest for half a period
$=\quad 1010.125+1 / 2 * 1 / 2 * 10 / 100 * 1000=1035.125$

