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Abstract

These are the notes of lectures on univariate time series analysis and Box Jenk�
ins forecasting given in April� ����� The notes do not contain any practical
forecasting examples as these are well covered in several of the textbooks listed
in Appendix A� Their emphasis is on the intuition and the theory of the Box�
Jenkins methodology� These and the algebra involved are set out in greater
detail here than in the more advanced textbooks� The notes� thus may serve as
an introduction to these texts and make their contents more accessible�

The notes were originally prepared with the scienti�c word processor Chi�
writer which is no longer in general use� The reprinted version was prepared with
the LATEX version of Donald Knuth	s TEX mathematical typesetting system�
Some version of TEX is now the obligatory standard for submission of articles
to many mathematical and scienti�c journals� While MS WORD is currently
acceptable to many economic journals TEX has been requested and is sometimes
very much preferred� Many books are now prepared with TEX� TEX is also a
standard method for preparing mathematical material for the internet� TEX is
free and the only signi�cant cost of using it is that of learning how to use it�

It is often held that TEX systems are to di
cult to use� On the other hand� it
would have been impossible to produce this document in� for example� WORD
���a and WINDOWS ��x� I would not suggest that TEX be used for ordinary
o
ce work� A standard WYSIWYG word processor such as WORD would
complete this work much better� For preparing material such as these notes
TEX is better and should be considered�

An implementation of TEX for Windows is available from me on diskettes�
TEX and LATEX are freeware� A distribution �gTEX� is available from me on re�
quest� I can also provide some printed installation instructions if anyone wishes
to install it on their own computer� While gTEX is designed to work with
Windows its installation and operation requires some knowledge of MS�DOS�
I am not in a position to support any TEX installation� For a knowledge of
LATEX please see Lapont ������� �LATEX document preparation system � User	s
Guide and Reference Manual�� Addison�Wesley Publishing Company� ISBN
�������������
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Chapter �

Introduction

Univariate time series

Forecasting or seeing the future has always been popular� The ancient Greeks
and Romans had their priests examine the entrails to determine the likely out�
come of a battle before they attacked� To�day� I hope� entrails are not used
to any extent in forecasting� Rather scienti�c forecasts are based on sound
�economic� theory and statistical methods� Many people have mixed opinions
about the value of scienti�c forecasting as they may have often found that such
forecasts are often wrong�

This opinion is due to a basic missunderstanding of the nature of scienti�c
forecasting� Scienti�c forecasting can achieve two ends

� provide a likely or expected value for some outcome � say the value of the
CPI at some point in the future

� reduce the uncertainty about the range of values that may result from a
future event

The essence of any risky decision is that one can not know with certainty what
the result of the decision will be� Risk is basically a lack of knowledge about the
future� With perfect foresight there is no risk� Scienti�c forecasting increases
our knowledge of the future and thus reduces risk� Forecasting can not and will
never remove all risk� One may purchase insurance or even �nancial derivatives
to hedge or remove ones own risk� at a cost� This action is only a transfer of
risk from one person or agency to another who is willing to bear the risk for
reward�

Forecasting and economic modelling are one aspect of risk assessment� It
relies on what can be learned from the past� The problem is that relying solely
on the past will cause problems if the future contains events that are not similar
to those that occurred in the past� Could events such as the October ����
stock market crash� the ����� ERM crisis� the far�east and Russian problems
of ���� have been predicted� in advance� from history� A minority of prophets
may have predicted them in advance � some through luck and perhaps others





through genuine insight� but to the majority they were unexpected� The failure
to predict such events should not be seen as a failure of forecasting methodology�
One of the major assumptions behind any forecast is that no unlikely disaster
will occur during the period of the forecast�

This does not imply that policy makers should not take possible disasters in
deciding on policy� On the contrary� they should examine and make contingency
plans where appropriate� This type of analysis is known as scenario analysis� For
this type of analyses one selects a series of scenarios corresponding to various
disasters and examines the e�ect of each scenario on the economy� This is a
form of disaster planning� One then evaluates the likelihood of the scenario
and its e�ects and sees what steps can be taken to mitigate the disaster� The
analysis of scenarios is a much more di
cult problem than univariate time
series modelling� For an economy� scenario analysis will require extentions to
an econometric model or a large computable general equilibrium model� Such
procedures requires considerable resources and their implementation involves
technical analyses beyond the scope of these notes� This does not take from the
the e�ectiveness of a properly implemented univariate forecasting methodology
which is valuable on its own account�

On the topic of scenario analysis one may ask what kind of disasters we
should consider for scenario analysis� I can think of many disasters that might
hit the �nancial system� For a central bank to consider many of these might
give rise to a suspicion that the central bank thought that such a disaster might
occur� There will always be concern in such cases that this may lead to stresses
in the �nancial system� There is a problem here that is bound up with central
bank credibility�

These notes are not intended as a full course in univariate time�series analy�
sis� I have not included any practical forecasting examples� Many of the books
in the annotated bibliography provide numerous practical examples of the use
of univariate forecasting� Other books listed there provide all the theory that
is required but at an advanced level� My emphasis is more on the intuition
behind the theory� The algebra is given in more detail than in the theoretical
texts� Some may �nd the number of equations somewhat o�putting but this is
the consequence of including more detail� A little extra e�ort will mean that
the more advanced books will be more accessible�

These notes and a thorough knowledge of the material in the books in the
references are no substitute for practical forecasting experience� The good fore�
caster will have considerable practical experience with actual data and actual
forecasting� Likewise a knowledge of the data without the requisite statistical
knowledge is a recipe for future problems� Anyone can forecast well in times
of calm� The good forecaster must also be able to predict storms and turning
points and this is more di
cult�

When a forecast turns out bad one must �nd out why� This is not an
exercise aimed to attach blame to the forecaster� An unfull�lled forecast may
be an early warning of an event such as a downturn in the economy� It may
indicate tha some structural change has taken place� There may be a large
number of perfectly valid reasons why a forecast did not turn out true� It is
important that these reasons be determined and acted on�
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An unfull�lled forecast may be very good news� If the original forecast was
for trouble ahead and persuaded the powers that be to take remedial policy
action� If the policy changes produced a favourable outcome then one would
appreciate the early warning provided by the forecast� In e�ect policy changes
may invalidate many forecasts� In particular all forecasts not based on structural
models are not robust with respect to policy changes� The construction of
structural models which are invariant with respect to policy changes is an order
of magnitude more di
cult than building univariate forecasts

These notes deal with the forecasting and analysis of univariate time series�
We look at an individual time series to �n out how an observations at one par�
ticular time is related to those at other times� In particular we would like to
determine how a future value of the series is related to past values� It might
appear that we are not making good use of available information by ignoring
other time series which might be related to the series of interest� To some extent
the gains from the rich dynamic structures that can be modelled in an univari�
ate system outweigh the costs of working with more complicated multivariate
systems� If su
ciend data are available recent reduction in the cost of and other
advances in computer hardware�software have made some multivariate systems
a practical possibility� Structural multivariate macroeconometric models may
have better long�run properties but their poorer dynamic properties may result
in poorer short�run forecasts�

Practical experience has shown that the analysis of individual series in this
way often gives very good results� Statistical theory has shown that the method
is often better than one would expect� at �rst sight� The methods described
here have been been applied to analysis and forecasting such diverse series as�

� Telephone installations
� Company sales
� International Airline Passenger sales
� Sunspot numbers
� IBM common stock prices

� Money Demand
� Unemployment
� Housing starts
� etc� � � �

The progress of these notes is as follows� Chapter � deals with the statistical
properties of univariate time series� I include an account of the most common
stationary �white noise� AR� MA� ARMA� processes� their autocorrelations�
and impulse response functions� I then deal with integrated processes and tests
for non�stationarity� Chapter  uses the theory set out in the previous chapter
to explain the identi�cation� estimation� forecasting cycle that is involved in
the seasonal and non�seasonal Box�Jenkins methodology� Chapter � reviews a
selection of software that has been used in the Bank for this type of work� The
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exclusion of any item of software from this list is not to be taken as an indication
of its relative value� It has been excluded simply because I have not used it� If
any producer of econometric software for PCs feels that his software is superior
and would like me to include an account of it in a future version of these notes
I would be glad to receive an evaluation copy and time permitting I will include
an account of it in the next version of these notes�
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Chapter �

Theory of Univariate Time

Series

��� Basic De�nitions

We start with some basic de�nitions� The elements of our time series are denoted
by

X�� X�� � � � � Xt� � � �

The mean and variance of the observation at time t are given by

�t � E�Xt�

��t � E��Xt � �t�
��

respectively and the covariance of Xt� Xs by

cov�Xt� Xs� � E��Xt � �t��Xs � �s�� � �ts

In this system there is obviously too little information to estimate �t� �
�
t � and

�ts as we only have one observation for each time period� To proceed we need
two properties � stationarity and ergodicity�

A series is second order stationary if�

�t � �� t � �� �� � � �

��t � ��� t � �� �� � � �

�t�s � �t�s� t �� s� � � �

i�e� the mean� variance and covariances are independent of time�

A series is strictly stationary if the joint distribution of �X�� X�� � � � � Xt� is
the same as that of �X��� � X��� � � � � � Xt�� � for all t and � � If a series has a
multivariate normal distribution then second order stationarity implies strict
stationarity� Strict stationarity implies second order stationarity if the mean
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and variance exist and are �nite� Be warned that text books have not adopted
a uniform nomenclature for the various types of stationarity

In a sense we would like all our series to be stationary� In the real world this
is not possible as much of the real world is subject to fundamental changes� For
a nonstationary series we may try to proceed in the following way�

� Find a transformation or some operation that makes the series stationary
� estimate parameters
� reverse the transformation or operation�

This use of a single measurement at each time to estimate values of the un�
known parameters is only valid if the process is ergodic� Ergodicity is a math�
ematical concept� In essence it means that observations which are su
ciently
far apart in time are uncorrelated so that adding new observations gives extra
information� We assume that all series under consideration have this property�

We often use autocorrelations rather than covariances� The autocorrelation
at lag � � �� is de�ned as�

�� �
�t�t��
��

�
��
��
�

E��Xt � ����Xt�� � ��

E��Xt � ����Xt � ���

A plot of �� against � is know as the autocorrelogram or auto�correlation func�
tion and is often a good guide to the properties of the series� In summary
second order stationarity implies that mean� variance and the autocorrelogram
are independent of time�

Examples of Time series Processes

����� Normal �Gaussian� White Noise

If 	t are independent normally distributed random variables with zero mean and
variance ��� then it is said to be Normal �Gaussian� White Noise�

� � E�	t�

� �

V ar�	t� � ���

�� � �

�� � E�	t 	t�� �

� � if � �� � �independence�

Normal White Noise is second order stationary as its mean variance and auto�
correlations are independent of time� Because it is also normal it is also strictly
stationary�
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����� White Noise

The term white noise was originally an engineering term and there are subtle�
but important di�erences in the way it is de�ned in various econometric texts�
Here we de�ne white noise as a series of un�correlated random variables with
zero mean and uniform variance ��� 
 ��� If it is necessary to make the stronger
assumptions of independence or normality this will be made clear in the context
and we will refer to independent white noise or normal or Gaussian white noise�
Be careful of various de�nitions and of terms like weak� strong and strict white
noise

The argument above for second order stationarity of Normal white noise
follows for white noise� White noise need not be strictly stationary�

����� AR��� Process

Let 	t be White Noise� Xt is an AR��� Process if

Xt � �Xt�� � 	t �j�j � ��
Xt � 	t � ���Xt�� � 	t���

� 	t � �	t�� � ��Xt��
� 	t � �	t�� � ����Xt�� � 	t���

� 	t � �	t�� � ��	t��� � ��Xt��
� � � � � �

� 	t � �	t�� � ��	t�� � ��t��	t�� � � � �

E�Xt� � �

�which is independent of t�

Autocovariance is given by

�k � E�XtXt�k�

� E

� �X
i��

�i	t�i

�� �X
i��

�i	t�i

�

�

�X
i��

�i�k�i���

� �k�i���

infX
i��

��i

� ���
�k

�� ��
�k

�k �
k
�

� �kk � �� �� � � �

� �jkjk � �������� � � �
�which is independent of t�
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We have shown that an AR��� Process is stationary� As an exercise you should
now draw the autocorrelogram of a white noise and several AR processes and
note how these change for values of � between �� and �
In most of the theoretical models� that we describe� we have excluded an

intercept for ease of exposition� Including an intercept makes the expected
value of the series non�zero but otherwise it does not e�ect our results�

Note that for our AR��� Process process we included a stipulation that
� � �� This is required in order that various in�nite series converge� If we
allowed � � � sums would diverge and the series would not be stationary�

����� Random Walk

We now consider the case � � �� Again 	t is white noise� Xt is a random walk
if

Xt � Xt�� � 	t

There is a sense that errors or shocks in this model persist� Con�rm this as
follows� Let the process start at time t � � with X� � �� By substitution�

Xt � 	t � 	t�� � � � �� 	� �X�

Clearly the e�ect of past 		s remain in Xt�

E�Xt� � X�

but

var�Xt� � t���

Therefore the series is not stationary� as the variance is not constant but in�
creases with t�

��� Lag Operators � Notation

Let X�� � � � � Xt be a time series� We de�ne the lag operator L by�

LXt � Xt��

if

��L� � �� ��L� ��L
� � � � � � �pL

p

An AR�p� process is de�ned as

Xt � ��xt�� � ��Xt�� � � � �� �pXt�p � 	t

��



where 	t is white noise� In terms of the lag operator this may be written�

Xt � ��Lxt � ��L
�Xt � � � �� �pL

pXt � 	t

��� ��L� ��L
� � � � � � �pL

p�Xt � 	t

��L�Xt � 	t

The lag operator is manipulated using the ordinary rules of algebra� Further
information on the lag operator is available in the references quoted at the end
of these notes and in particular in Dhrymes������

In terms of the lag operator the AR��� process may be written�

��� �L�Xt � 	t� j�j � �
Xt �

�
�

�� �L

�
	t

� �� � ��L� ��L� � � � � � 	t

� 	t � �	t�� � � � �

as before

��� AR��	 Process

The AR��� process

Xt � ��Xt�� � ��Xt�� � 	t

may be written in terms of the lag operator as

��� ��L� ��L
��Xt � 	t

We may write the process as

Xt � ��L�	t

� �� � ��L� ��L
� � � � � �	t

where

��� ��L� ��L
���� � �� � ��L� ��L

� � � � � �

or equivalently

��� ��L� ��L
���� � ��L� ��L

� � � � � � � �
Equating coe
cients we get�

L� � ��� � �� � � �� � ��

L� � ��� � ���� � �� � � �� � ��� � ��

L� � ��� � ���� � �� � � �� � ��� � �����

� � �

Lj � �j � ���j�� � ���j��

��



and all weights can be determined recursively�

The AR��� process was stationary if j�j � �� What conditions should we
impose on the AR��� process

��� ��L� ��L
��Xt � 	t

in order that it be stationary� Consider the reciprocals �say g� and g�� of the
roots of

��� ��L� ��L
�� � �

Then the equation may be written

��� g�L���� g�L� � �

The process is stationary if jg�j � � and jg�j � �� These roots may be real or
complex� �It is usually said that jg�j�� and jg�j�� lie outside the unit circle��
These restrictions impose the following conditions on �� and ���

�� � �� � �

��� � �� � �

�� � �� � �

The ACF �autocorrelation function� of a stationary AR��� process may be
derived as follows� Multiply the basic equation

Xt � ��Xt�� � ��Xt�� � 	t

by Xt�k and take expectations

E�XtXt�k�� ��E�Xt��Xt�k�� ��E�	tXt�k� � E�Xt�k	t�

k � ��k�� � ��k�� � E�	tXt�k�

E�Xt��Xt�k� �

�
��� for k � �

� for k � �� �� � � �

� � ���� � ���� � ��� � � � ��� � ���

k � ��k�� � ��k�� � � k � �� � � � �

or in terms of autocorrelations�

�k � ���k�� � ���k�� � � k � �� � � � �

The observant reader will notice that the autocorrelations obey the same
di�erence equation as the time series apart from the missing random term �the
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corresponding homogeneous di�erence equation� and the initial conditions ��� �
�� ��� � ��� We can solve this problem by direct substitution�

For k � �

�� � ���� � ����� � �

�� � �

�� � ���

�� �
��

�� ��

For k � �

�� � ���� � ���� �
���

�� ��
� ��

and all other values may be derived from the recursion and may be seen to be
time independent�

We now work out the variance of an AR��� system�

Put k � � in recursion for covariances�

� � ���� � ���� � ���

���� ���� � ����� � ���

�

�
�� ���

�� ��
� �����
�� ��

� ���

�
� ���

�

�
�� �� � ��� � ����� � ������ ���

�� ��

�
� ���

�
�
�� � ���

�
�� �� � ���

�� �� �� � ���� ��� �� � ���
�
� ��� ����

�
�

�
�
�� ��� � ��� � ���

�
�
�� ��
� � ��

���

� �
�� ��
� � ��

���
��� �� � ��� ��� �� � ���

which is independent of t� The conditions on g� and g�� given earlier� ensure
that � � � ���
Thus an AR ��� process is stationary�

The properties of the Autocorrelation function may be derived from the
general solution of the di�erence equation

�k � ���k�� � ���k�� � �

�



which is of the form

�k � Agk� �Bgk�

where A and B are constants determined by initial conditions �� � � and
��� � ���� If g� and g� are real the autocorrelogram is a mixture of two
damped exponentials �i�e� both die out exponentially�� This is similar to a
weighted sum of two AR ��� processes�

If g� and g� are complex the ACF is a damped sine wave�

If g� � g� the general solution is given by

�k � �A� �A�k� g
k

��
 AR�p	 Process

An AR�p� process is de�ned by one of the following expressions

xt � ��xt�� � � � � � �pxt�p � 	t

or

��� ��L� � � � � �pL
p�xt � 	t

or

� �L�xt � 	t

where

� �L� � �� ��L� � � � � � � � �pL
p

For an AR�p� process the stationarity conditions may be set out as follows�
Write

��L� � ��� g�L� ��� g�L� � � � ��� gpL�

Stationarity conditions require

jgij � � for i � � � � � p

or alternatively

g��i all lie outside the unit circle�

We may derive variances and correlations using a similar but more complicated
version of the analysis of an AR��� process� The autocorrelations will follow a
di�erence equation of the form

��L��k � � k � �� � � �

��



This has a solution of the form

�k � A�g
k
� �A�g

k
� � � � ��Apg

k
p

The ACF is a mixture of damped exponential and sine terms� These will in
general die out exponentially�

��� Partial Autocorrelation Function PACF

Considering all orders of AR processes� eventually� die out exponentially is there
any way we can identify the order of the process� To do this we need a new
concept�the Partial Autocorrelation function�

Consider the autocorrelation at lag �� Observation � e�ects observation ��
Observation � a�ects observation  through two channels� i�e� directly and indi�
rectly through its e�ect on observation � and observations ��s e�ect on observa�
tion � The autocorrelation measures both e�ects� The partial autocorrelation
measures only the direct e�ect�

In the case of the kth order the correlation between xt and xt�k can in part
be due to the correlation these observations have with the intervening lags xt���
xt��� � � � ��xt�k��� To adjust for this correlation the partial autocorrelations are
calculated�

We may set out this procedure as follows �

Estimate the following sequence of models

xt � a��xt�� � 	�

xt � a��xt�� � a��xt�� � 	�

xt � a��xt�� � a��xt�� � a��xt�� � 	�

� � �

xt � ak�xt�� � � � �� akkxt�k � 	k

The sequence a��� a��� a��� � � � � akk � � � � are the partial autocorrelations� In
practice they are not derived in this manner but from the autocorrelations as
follows�

Multiply the �nal equation above by xt�k� take expectations and divide
by the variance of x� Do the same operation with xt��� xt��� xt�� � � � xt�k
successively to get the following set of k equations �Yule�Walker��

�� � ak� � ak��� � � � � akk�k��
�� � ak��� � ak� � � � � akk�k��
� � �

�k � ak��k�� � ak��k�� � akk

��



Use Cramer	s rule to solve for akk to get

akk �

��������
� �� � � � �k�� ��
�� � � � � �k�� ��
� � � � � � � � � � � � � � � � � � � � � � � � � � � �
�k�� �k�� � � � �� �k

����������������
� �� � � � �k�� �k��
�� � � � � �k�� �k��
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�k�� �k�� � � � �� �

��������
It follows from the de�nition of akk that the partial autocorrelations of autore�
gressive processes have a particular form�

AR��� a�� � �� � � akk � � k 
 �

AR��� a�� � �� a�� �
������
����

�

akk � � k 
 �

AR�p� a�� �� � a�� �� � app �� � akk � � k 
 p

Hence for an AR process

� Autocorrelations consist of damped exponentials and�or sine waves�
� The Partial autocorrelation is zero for lags greater than the order of the
process�

��� MA Process

An MA��� process is de�ned by�

Xt � 	t � �	t��

where 	t is white noise

E�Xt� � �

var�Xt� � E��	t � �	t�����

� E�	�t � ��E�	�t��� �independence�

� �� � ������

�� � E�xtxt���

� E��	t � �	t����	t�� � �	t����

� �E�	�t���

� ����

therefore

�� �
�

� � ��

�� � E��	t � �	t����	t�� � �	t����

� �

��



Clearly �j � � for j � �� Thus an MA��� process is stationary �regardless
of the value of ���

An MA�q� process is de�ned as follows� 	t is as usual a Gaussian White
noise�

Xt � 	t � ��	t�� � � � �� �q	t�q
E�Xt� � �

var�Xt� � �� � ��� � � � �� ��q ��
�
�

�k � Cov�XtXt�k� �

� E��	t � ��	t�� � � � � �k	t�k �

�k��	t�k�� � � � �� �q	t�q�

�	t�k � ��	t�k�� � � � �� �q�k	t�q � � � � �

� ��k � �k���� � � � �� �q�q�k����
and

�k �
�k

var�Xt�

It is clear that an MA process is stationary regardless of the values of the
��s�

�k �

	
�
P

n�k

i��
	�i�i�k�

������������q�
� k 	 q

� � k 
 q

The important point to note is that the autocorrelation function for an MA�q�
process is zero for lags greater than q�

The duality between AR and MA processes is even more complete� The
derivation of an expression for the partial autocorrelation function of an MA
process is too complicated to give here� One would �nd that the partial auto�
correlation function of an MA process has the same general form as the auto�
correlation function of an AR process�

�� Invertibility

A property required on occasion in the analysis of such time series is that of
invertibility� Recall that the AR��� process

��� �L�xt � 	t

is stationary if j�j � �� In such cases the AR��� process has an MA��� repre�
sentation�

��



xt � ��� �L���	t
� �� � �L� ��L� � � � � �	t

� 	t � �	t�� � ��	t�� � � � �

and this series converges due to stationarity conditions�

Consider the MA��� process with j�j � � �j�j�� 
 �
xt � ��� �L�	t

��� �L���xt � 	t

�� � �L� ��L� � � � � �xt � 	t

xt � �xt�� � ��xt�� � � � � � 	t

The left hand side converges if j�j � �� In such cases MA��� process has an
AR��� representation and the process is said to be invertible� If the MA�q�

process xt �  �L�	t is invertible the roots of  �L� � � are outside the unit
circle�

The methodology that we are developing �i�e deriving properties of a series
from its estimated autocorrelogram� depends on a unique relationship between
the autocorrelogram and the series�� It may be shown that this unique relation�
ship holds for stationary AR�p� and invertible MA�q� processes�

��� Examples

Example �� Determine the ACF of the process

yt � 	t � ���	t�� � ��	t��

where 	t is White noise with variance �
�

Solution

Eyt � �

V ar�yt� � �� � ������ � �������� � ������

E�ytyt��� � E�	t � ���	t�� � ��	t����	t�� � ���	t�� � ��	t���
� ������� �����
� ������

�� � ���

E�ytyt��� � E�	t � ���	t�� � ��	t����	t�� � � � � �

� ������
�� � ����

�� � �
 � � � � � �

��



Example �� Calculate and plot the autocorrelations of the process yt �
	t � ���	t�� � ����	t�� where 	t is White Noise� Comment on the shape of the
partial autocorrelation function of this process

Example  Calculate and plot the autocorrelation function of this process
yt � ���yt�� � 	t where 	t is White noise with variance �

�

��� Autocorrelations for a random walk

Strictly speaking these do not exist but if we are given a sample from a random
walk we can estimate the sample autocorrelation function� Will the shape of this
be signi�cantly di�erent from that of the processes we have already examined�
The random walk is given by

Xt � Xt�� � 	t where 	t is White Noise

Let x�� x�� � � � �xn be a sample of size n from such a process The sample auto�
covariance is given by

c� �
�

n

nX
t����

�xt � !x��xt�� � !x�

where

!x �
�

n

j�tX
j��

xj

As 	t is stationary its autocovariances will tend to zero� We may write

�

n

nX
t����

	t	t��

�
�

n

nX
t����

�xt � xt����xt�� � xt�����

�
�

n

nX
t����

��xt � !x�� �xt�� � !x����xt�� � !x�� �xt���� � !x��

�
�

n

nX
t����

��xt � !x��xt�� � !x� � �xt�� � !x��xt���� � !x�

��xt � !x��xt���� � !x�� �xt�� � !x��xt�� � !x��

In this expression �

LHS 
 �
RHS �st term 
 c�

�nd term 
 c�
rd term 
 c���
�th term 
 c���

��
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Figure ���� Sample autocorrelations of a Random Walk�

Thus for su
ciently large t we have � � �c� � c��� � c��� Thus �c� �
c��� � c���� This is illustrated in Figure ���

Sample autocorrelations behave as a linear function and do not die out expo�
nentially� This indicates that the series is not stationary� Note that the sample
autocorrelations for a random walk are very similar to the theoretical autocorre�
lations of an AR��� process with � close to �� The theoretical autocorrelations
for a random walk are all equal to �� We will later look at a statistical test
which is applicable in this case� Di�erencing may make a series stationary �see
earlier comments on the random walk��

���� The ARMA�p� q� Process

We mow consider �Mixed� ARMA�p� q� processes�

Again let 	t be white noise� Xt is a �mixed� Autoregressive Moving Average
process of order p� q� denoted ARMA�p� q� if

Xt � ��Xt�� � � � �� �pXt�p � 	t � ��	t�� � � � �� �q	t�q

��� ��L� ��L
� � � � � � �pL

p�Xt � �� � ��L� ��L
� � � � �� �qL

q�	t

or

��L�Xt �  �L�	t

where � and  are polynomials of degree p and q respectively in L�

��



The conditions for stationarity are the same as those for an AR�p� process�
i�e� ��L� � � has all its roots outside the unit circle� The conditions for
invertibility are the same as those for an MA�q� process� i�e  �L� � � has
all its roots outside the unit circle� The autocorrelogram of an ARMA�p� q�
process is determined at greater lags by the AR�p� part of the process as the
e�ect of the MA part dies out� Thus eventually the ACF consists of mixed
damped exponentials and sine terms� Similarly the partial autocorrelogram of
an ARMA �p� q� process is determined at greater lags by the MA�q� part of the
process� Thus eventually the partial autocorrelation function will also consist
of a mixture of damped exponentials and sine waves�

There is a one to one relationship between process and autocorrelation func�
tion� for a stationary and invertible ARMA�p� q� process

We have looked� at great length� into the properties of stationary AR�p��
MA�q� and ARMA�p� q� processes� How general are these processes� Wald in
��� proved the following result �see Priestly��

Any stationary process Xt can be expressed in the form

Xt � Ut � Vt

where

�� Ut and Vt are uncorrelated

�� Ut has a representation Ut �
P�

i�� gi	t�i with g� � �
P

g�i � � and
	t white noise uncorrelated with Vt� �i�e� E�	t� Vs� � � all t� s�� The
sequence gi are uniquely de�ned�

� Vt can be exactly predicted from its past values�

Thus apart from a deterministic term any stationary process can be represented
by an MA��� process�
We try to approximate the in�nite polynomial

� � g�L� g�L
� � � � �

by the ratio of two �nite polynomials

 �L�

��L�

� It may be shown that such an approximation can be achieved to any preas�
signed degree of accuracy�

���� Impulse Response Sequence

Any stationary and invertible ARMA�p� q� may be represented as

��L�Xt �  �L�	t

��



where

��L� � �� ��L� � � � � �pL
p

 �L� � � � ��L� � � � � �qL
q

or by it autocorrelations�

In these conditions it may also be represented as

Xt � "�L�	t

�
P�

j�� �j	t�j

The sequence f�jg is known as the impulse response sequence for reasons
which will become clear below� In linear systems theory the sequence f	jgis
known as the input sequence and fXjg as the output sequence� A system is
linear if when inputs fu�jg � fu�jg produce outputs fy�j g� fy�j g� respectively�
inputs fu�j � u�jg produces fy�j � y�j g� Note the absence of a constant� in the
de�nition of the system�

Let ut� �� 	 t 	�� be the input to a system� How does the output change
if the input at t � � is increased by unity� By linearity the change is the same
as the respons of a system with �t � � for all t except for t � � when �� � ��
The e�ect of this shock is given by

Delay e�ect of shock

� �
� ��
� ��
���

���

The e�ect of the shock at a delay of t is to add �t to the output at time t�
For this reason f�tg is known as the impulse response sequence�

���� Integrated processes

Most of the processes encountered in economics are not stationary� Common
sense will con�rm this in many cases and elaborate statistical tests may not
be required� Many economic series behave as random walks and taking �rst
di�erences will make the series stationary� i�e� xt is not stationary but zt �
xt � xt�� � #xt is stationary� Such a series is said to be integrated of order ��
denoted I����

On occasion a series must be di�erenced d times before it can be made
stationary �It is not stationary if di�erenced �� � � � � d � � times�� Such a series
is said to be integrated of order d� denoted I�d�� If di�erencing a series d times
makes it into a stationary ARMA�p� q� the series is said to be an autoregressive
integrated moving average process� denoted ARIMA�p� d� q� and may be written

��L���� L�dXt �  �L�	t

�In linear systems theory a constant can be included in the initial conditions attached to
the system �initial energy storage�

��



where ��L� is a polynomial of order p�  �L� of order q and � and  obey the
relevant stationarity and invertibility conditions� In this expression the right�
hand side has a unit root in the operator ��L���� L�d Testing for stationarity
is the same as looking for� and not �nding� unit roots in this representation of
the series In economics with monthly� quarterly or annual time series d will not
be more than two�

If the presence of a unit root is not obvious it may become obvious from an
examination of the sample autocorrelogram and indeed this tool was used for
many years to indicate their presence� In recent years Dickey Fuller tests have
been designed to test for a unit root in these circumstances�

If xt has a unit root and we estimate the regression

xt � �xt�� � 	t

we would expect a value of � close to one� Alteratively if we run the regression

#xt � �xt�� � 	t

we would expect a value of � close to zero� If we calculate the t�statistic for
zero � we should be able to base a test of � � � �or the existence of a unit root�
on this statistic� However the distribution of this statistic does not follow the
usual t�statistic but follows a distribution originally tabulated by Fuller �������

We test

Ho � � � �unit root�
against
H� � � � �stationarity�

and reject the unit root for su
ciently small values of the t�statistic�

In e�ect there are four such tests

Test Regression True Model

�� #xt � �xt�� � 	t #xt � 	t

�� #xt � �� � �xt�� � 	t #xt � 	t

� #xt � �� � �xt�� � 	t #xt � �� � 	t

�� #xt � ��t� �� � �xt�� � 	t #xt � �� � 	t

The t statistics for � � � in �� �� and �� yield the test statistics that Fuller
calls b� � b�� and b�� respectively� These are referred to as the $no constant	� $no
trend	� and $with trend statistics	� Critical values for these statistic and the
t�statistic are compared below�

Comparison of Critical Values
samplesize � �� samplesize � ��

size t� stat %� %�� %�� %� %�� %��
�& ��� ����� ���� ���� ����� ���� �����
�& ����� ����� ���� ���� ����� ���� ����
��& ����� ����� ����� ���� ����� ����� ����

�



The t�statistic in  has an asymptotic Normal distribution� This statistic is
not� in my opinion� as important in econometrics� It has been suggested that�
in �nite samples� the Dickey�Fuller distributions may be a better approximation
than the Normal distribution� In �� � and � the joint distribution of ��� �� and
� have non�standard distributions� It is possible to formulate joint hypotheses
about ��� �� and �� Critical values are given in Dickey and Fuller ������ and
have been reproduced in several books

The Dickey Fuller critical values are not a�ected by the presence of het�
eroscedasticity in the error term� They must� however� be modi�ed to allow for
serial autocorrelation� The presence of autocorrelation in the may be thought
of as implying that we are using the 	wrong	 null and alternative hypotheses�
Suppose that we assume that the �rst di�erence follows an AR�p� process�
Augmented Dickey�Fuller �ADF� are then appropriate� In an ADF test the
regressions are supplemented by lags of #Xt�

Test Regression True Model

�� #xt � �xt�� �
pX

j��

�j#Xt�j � 	t � � �

�� #xt � �� � �xt�� �
pX

j��

�j#Xt�j � 	t �� � � � �

�� #xt � �� � �xt�� �
pX

j��

�j#Xt�j � 	t � � �

�� #xt � ��t� �� � �xt�� �
pX

j��

�j#Xt�j � 	t �� � � � �

In �� �� and � the t�statistics for � � � have the same b� � b�� and b�� distribu�
tions as those of the unaugmented regressions� The t�statistics for �j � � have
standard distributions in all cases� Note that the joint distributions of ��� ��
and � may have non�standard distributions as in the unaugmented case�

The ADF test assumes that p the order of the AR process is known� In
general this is not so and p must be estimated� It has been shown that if p
is estimated using the Akaike ������ AIC or Schwartz ������ BIC criterion or
using t�statistics to test signi�cance of the �j statistics the con�dence intervals
remain valid� The ADF test may be extended to the ARMA family by using
the ADF and AIC or BIC to insert an appropriate number of lags�

Philips ������ and philips and Perron ������ proposed an alternative method
of dealing with autocorrelated variables� Their method is somewhat more gen�
eral and may be considered an extention to testing within an ARMA class of
series� They calculate the same regressions as in the Dickey Fuller case but ad�
just the test statistics using non�parametric methods to take account of general
autocorrelation and heteroscedasticity� Said and Dickey ADF tests also provide
a valid test for general ARMA processes�

��



The choice of test may appear somewhat confusing� In an ideal situation
one would hope that the conclusions might be the same regardless of the test�
In the type of forecasting exercise one would expect that the type of test used
would be consistent with the model being estimated� Thus if an AR�� model
�in levels� were estimated one would choose an ADF test with two lags In small
samples the power of unit root tests is low �i�e� it may accept the hypothesis of
a unit root when there is no unit root�� Thus care must be exercised in applying
these tests�

��



Chapter �

Box�Jenkins methodology

The Box�Jenkins methodology is a strategy for identifying� estimating and fore�
casting autoregressive integrated moving average models� The methodology
consists of a three step iterative cycle of

�� Model Identi�cation

�� Model Estimation

� diagnostic checks on model adequacy

followed by forecasting

��� Model Identi�cation

For the moment we will assume that our series is stationary� The initial model
identi�cation is carried out by estimating the sample autocorrelations and par�
tial autocorrelations and comparing the resulting sample autocorrelograms and
partial autocorrelograms with the theoretical ACF and PACF derived already�
This leads to a tentative identi�cation� The relevant properties are set out
below�

ACF PACF
AR	p
 Consists of damped ex�

ponential or sine waves�
dies out exponentially

Is zero after p lags

MA	q
 Is zero after q lags Consists of mixtures of
damped exponential or
sine terms�dies out ex�
ponentially

ARMA	p�q
 Eventually dominated by
AR�p� part� � � � then
dies out exponentially

Eventually dominated by
MA�q� part� � � � then
dies out exponentially

This method involves a subjective element at the identi�cation stage� This
can be an advantage since it allows non�sample information to be taken into

��



account� Thus a range of models may be excluded for a particular time series�
The subjective element and the tentative nature of the identi�cation process
make the methodology di
cult for the non experienced forecaster�

In deciding which autocorrelations�partial autocorrelations are zero we need
some standard error for the sample estimates of these quantities�

For an MA�q� process the standard deviation of %�� �the estimate of the
autocorrelation at lag �� is given by

n�
�
�

�
� � �

�
��� � � � �� ��q

�� �
� for � 
 q

For an AR�p� process the standard deviation of the sample partial autocor�
relations %akk is approximately

�p
n
for k 
 p�

By appealing to asymptotic normality we can draw limits of �� standard
deviations about zero to assess whether the autocorrelations or partial autocor�
relations are zero� This is intended as an indication only as the sample sizes
in economics are� in general small� In particular the sample estimates of the
autocorrelations of a stationary series are correlated in small samples � Thus
invalidating many standard inferences�

The identi�cation process is explained in Figures �� and ��� It is assumed
that the constant is zero in each illustrated system and this does not change the
shape of the theoretical autocorrelations or partial autocorrelations�

Figure �� gives the theoretical autocorrelations and partial autocorrelations
for the AR��� process Xt � �Xt��� 	t for � � ���� ���� ��� and ����� Note that
the partial autocorrelation function is zero except for the �rst autocorrelation�
This is the particular property of an AR��� process� Note that the autocorre�
lations die out exponentially� This process is slow when � is close to one� In
particular the theoretical autocorrelation function for the AR��� process with
� close to � is very similar to the shape of the sample autocorrelation function
for a random walk�

Figure �� plots the theoretical autocorrelations and partial autocorrelations
for three AR��� processes� The �rst process

Xt � Xt�� � ����Xt�� � 	t

which may be written

��� ���L���� ����L�Xt � 	t

The roots of the equation

��� ���L���� ���L� � �

are

L � ���� or L � ���

� both of which are outside the unit circle �modulus or absolute value greater
than one�� Thus the process is stationary� The autocorrelogram is very similar to

��



those or the AR��� processes in Figure ��� What distinguishes the process and
indenti�es it as an AR��� process is the two non�zero partial autocorrelations�

From the second system

Xt � ���Xt�� � ����Xt�� � 	t

the equation

�� ���L� ����L� � �

has roots

L � ���� ���i

These roots are complex conjugates and their modulus is ���� Thus the roots
are outside the unit circle and the process is stationary� In this case the au�
tocorrelations oscillate about zero and die out exponentially� This oscillatory
behaviour is a result of the complex roots that can occur in AR��� and higher
order processes�

If � is negative in an AR��� process the sign of the autocorrelations may
alternate but they can not oscillate in the same way as those of an AR��� or
higher order process� The PACF again shows the two non�zero values of the
partial autocorrelations typical of an AR��� process�

Higher orders of AR processes show autocorrelations which are mixtures
of those of AR��� and AR��� processes with the number of non�zero partial
autocorrelations corresponding to the order of the process

We could generate similar diagrams for MA���� MA��� and higher order
MA processes� Such diagrams would be very similar to those already generated
for AR processes of similar order but with the autocorrelations and partial auto�
correlations interchanged� The number of non�zero autocorrelations for an MA
process corresponds to the order of the process� The partial autocorrelations
for an MA process resemble the autocorrelations for an AR process�

Figure � shows an example of the autocorrelations and partial autocorre�
lations for an ARMA��� �� process� Note that the autocorrelations are similar
to those of an AR process and the partial autocorrelations resemble those of an
MA process�

��



ACF for Xt � �Xt�� � 	t
� � ��

���

���

���

� � � � � � � 	 
 � ������

��

PACF for Xt � �Xt�� � 	t
� � ��

���

���

���

� � � � � � 	 
 � ������

��

ACF for Xt � �Xt�� � 	t
� � ��

���

���

���

� � � � � � � 	 
 � ������

��

PACF for Xt � �Xt�� � 	t
� � ��

���

���

���

� � � � � � 	 
 � ������

��

ACF for Xt � �Xt�� � 	t
� � ��

���

���

���

� � � � � � � 	 
 � ������

��

PACF for Xt � �Xt�� � 	t
� � ��

���

���

���

� � � � � � 	 
 � ������

��

ACF for Xt � �Xt�� � 	t
� � ���

���

���

���

� � � � � � � 	 
 � ������

��

PACF for Xt � �Xt�� � 	t
� � ���

���

���

���

� � � � � � 	 
 � ������

��

Figure ��� Autocorrelations and Partial Autocorrelations for various AR���
Processes
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Figure ��� ACF and PACF for various AR��� Processes
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Figure �� ACF and PACF for an ARMA Process
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If the series are not stationary we try to make it stationary by a process of
preliminary transformations and�or di�erencing the data� Preliminary trans�
formations are simple transformations which are intended to do two things

� Straighten out trends
� Reduce heteroscedasticity i�e� produce approximately uniform variability
in the series over the sample range

In the second case we often �nd that the variance of xt is proportional to xt�
In general one of the following will su
ce

� Do nothing
� Take logarithms
� Take square roots

In deciding how to proceed bear the following in mind

� Do you think of the series in terms of growth rates �G�N�P�� money� prices
etc��� If so take logs�

� If a percentage growth rate has no meaning for the series�do nothing or
possibly take square roots if the series is more variable at higher values
�e�g� some count data��

If the choice of transformation is not obvious then a transformation will probably
make little or no di�erence to the forecast� In particular di
cult cases some
form of Box�Cox transformation may be used but this will not generally be
required in economics�

Forecasting methodology is generally very sensitive to errors in di�erencing�
particularly to underdi�erencing� The Dickey�Fuller tests may be used to test
the degree of di�erencing� The amount of di�erencing and the inclusion of a
constant in the model determine the long�term behaviour of the model� The
following table lists the implications of various combinations of di�erencing and
the inclusion�exclusion of an intercept�

Di�erences Intercept Behaviour
� Yes Clusters around mean level �unemploy�

ment��
� No Doesn	t trend�Doesn	t seek a level �in�

terest rates�
� Yes Trends at a fairly constant rate �real

G�D�P��
� No Trends at a variable rate �price index�

A very important principle in this type of analysis is that of parsimony�
Many stationary processes can be well �tted by a high order AR process

xt � ��xt�� � � � �� �pxt�p � 	t
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where p may be reasonably large� The possibility of using an ARMA process for
approximation may allow us to achieve a good �t with many fewer parameters�
In e�ect this more parsimonious model may forecast better� The smaller the
data set the less parameters you can estimate and the more important judgment
becomes�

Time series models should not be taken too seriously� They are designed to
�t the serial correlation properties of the data and not to explain them� You
should aim to �nd a model which �ts the data well with as few parameters as
possible�

The most carefully thought out model is worthless if it cannot be estimated
using the available data� While it may be thought that four parameters can be
estimated from thirty data points� experience has shown that if a three param�
eter model �ts almost as well �even if the di�erence is statistically signi�cant�
then the smaller model will forecast better most of the time�

��� Estimation

The class of models we have considered so far may be expressed as

��L�rdxt � �� �L�	t

where

��L� � �� ��L� � � � � �pL
p

 �L� � � � ��L� � � � � �qL
p

r � �� L

and we have inserted a constant �� If d is known we write yt � rdxt

If 	� � � � 	t are independent normal we may write their joint density as

f�	�� � � � � 	n��� ��� � � � � �p� ��� � � � � �q � �
�� �

�
����

��T
� exp

�
� �

���

TX
i��

	�i

�

From this joint density we can derive the liklihood function� The calculations
are not trivial as the 	 are not observed� The procedure may be compared to a
regression where the residual follows an AR��� process� Two posibilites are

� Cochrane�Orcutt � works by using an iterative process which is conditional
on the �rst observation and

� the corresponding Maximum Liklihood which improves e
ciency by in�
cluding the �rst observation in the calculation of the liklihood�

In the estimation of an ARMA model it is possible to estimate the liklihood
conditional on the early observations� With modern software there is no need
to do this and if you should use full Maximum Liklihood� The estimation of the
liklihood can be achieved with many di�erent software packages on a PC�





If the numerical optimization does not converge it is most likely that the
model that is being estimated is not the right model� Check that the polynomials
��L� and "�L� do not have a common or near common factor �that is both are
divisible or almost divisible by ��� �L��� In such cases reducing the order of �
or  by one may make the process converge and result in a more parsimonious
model that will forecast better�

��� Model testing� diagnostic checks for model
adequacy

We will consider two types of diagnostic checks� In the �rst we �t extra coe
�
cients and test for their signi�cance� In the second we examine the residuals of
the �tted model to determine if they are white noise �i�e� uncorrelated��

����� Fitting extra coe�cients

Suppose we have tentatively identi�ed and estimated an ARMA�p� q� model�
Consider the following ARMA�p� q�� q � q�� model�

��� a�L� � � � � apL
p � � � � � ap�p�Lp�p��Xt �

�� � b�L� � � �� bqL
q � � � �� bq�q�Lq�q��	t

We can calculate a Lagrange Multiplier test of the restrictions

ap�� � ap�� � � � � � ap�p� � �
bq�� � bq�� � � � � � bq�q� � �

If the hypothesis is accepted we have evidence of the validity of the original
model�

����� Tests on residuals of the estimated model�

If the model is correctly speci�ed the estimated residuals should behave as
white noise �be uncorrelated�� If et t � �� � � � � T are the estimated residuals
we estimate the sample autocorrelations�

r� �et� �

PT
t���� etet���PT

t�� e
�
t

These sample autocorrelations should be close to zero� Their standard errors
are functions of the unknown parameters of the model but may be estimated
as �p

T
� Thus a comparison with bounds of ��p

T
will provide a crude check on

model adequacy and point in the direction of particular inadequacies�

In addition to the test on individual autocorrelations we can use a joint test
�portmanteau� known as the Q statistic

Q � n�n� ��

�
MX
i��

�n� ����r��

�

�



M is arbitrary and is generally chosen as �� to ��� Some programs produce
a Q�statistic based on M �

p
T � The Q statistic is distributed as �� with

M �p�q degrees of freedom� Model adequacy is rejected for large values of the
Q�statistic� The Q�statistic has low power in the detection of speci�c departures
from the assumed model� It is therefore unwise to rely exclusively on this test
in checking for model adequacy�

If we �nd that the model is inadequate we must respecify our model� reesti�
mate and re�test and perhaps continue this cycle until we are satis�ed with the
model

��
 A digression on forecasting theory

We evaluate forecasts using both subjective and objective means�

The subjective examination looks for large errors and�or failures to detect
turning points� The analyst may be able to explain such problems by unusual
unforeseen or unprovided for events� Great care should be taken to avoid ex�
plaining too many of the errors by strikes etc�

In an objective evaluation of a forecast we may use various standard mea�
sures� If xi is the actual datum for period i and fi is the forecast then the error
is de�ned as

ei � xi � fi ����

The following measures may be considered

Mean Error ME � �
n

Pn
i�� ei

Mean Absolute Error MAE � �
n

Pn
i�� jeij

Sum Squared Errors SSE �
Pn

i�� e
�
i

Mean Squared Error MSE � �
n

Pn
i�� e

�
i

Root Mean Square Error RMS �
q

�
n

Pn
i�� e

�
i

Alternatively consider a cost of error function C�e� where e is the error and

C��� � �

C�ei� 
 C�ej� if jeij 
 jej j

In many cases we also assume that C�e� � C��e�� In some cases an expert
or accountant may able to set up a form for C�e�� In much practical work we
assume a cost function of the form

C�e� � ae� for a 
 �

This form of function is

�� not a priori unreasonable

�� mathematically tractable� and

� has an obvious relationship to least squares criterion�

�



We can show that for this form of cost function the optimal forecast fnh �h
period ahead forecast of xn�h given xn�j for j � �� is given by

fnh � E�xn�h�xn�j � j � ��

This result may in e�ect be extended to more general cost functions�

Suppose we have two forecasting procedures yielding errors

e
	��
t e

	��
t

� t � � � � � n� IfMSE is to be the criterion the procedure yielding the lowerMSE
will be judged superior� Can we say if it is statistically better� In general� we
cannot use the usual F �test because the MSE	s are probably not independent�

Suppose that e
	��
t e

	��
t is a random sample from a bivariate normal distribu�

tion with zero means and variances ����
�
� and correlation coe
cient �� Consider

the pair of random variables e
	��
t � e

	��
t and e

	��
t � e

	��
t

E�e	�� � e	����e	�� � e	��� � ��� � ���

Thus the di�erence between the variances of the original variables will be zero
if the transformed variables are uncorrelated� Thus the usual test for zero
correlation based on the sample correlation coe
cient

r �

Pn
t��

�
�e

	��
t � e

	��
t ��e

	��
t � e

	��
t �

�
�Pn

t��

�
�e

	��
t � e

	��
t �

��Pn
t��

�
�e

	��
t � e

	��
t �

��� ��
can be applied to test equality of expected forecast errors� �This test is

uniformly most powerful unbiased��

Theil proposed that a forecasting method be compared with that of a naive
forecast and proposed the U �statistic which compared the RMS of the fore�
casting method with that derived from a random walk �the forecast of the next
value is the current value�� Thus

U �
�
n

PN
t�� �ft �Xt�

�

�
n

PN
t�� �Xt �Xt���

�

Sometimes U is written

U �

�
n

PN
t��

�
ft�Xt

Xt��

��
�
n

PN
t��

�
Xt�Xt��

Xt��

��
if U 
 � the naive forecast performs better than the forecasting method

being examined�

Even if the value of U is very much less than one we may not have a very
good forecasting methodology� The idea of a U statistic is very useful but today
it is feasible to use a Box Jenkins forecast as our base line and to compare this
with the proposed methodology�
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��� Forecasting with ARMA models

Let Xt follow the stationary ARMA model

Xt �

pX
j��

�jXt�j �
qX

j��

�j	t�j ��� � ��

At time t let fnh be the forecast of Xn�h which has smallest expected squared
error among the set of all possible forecasts which are linear in Xn�j � �j � ���
A recurrence relationship for the forecasts fnh is obtained by replacing each

element in the above equation by its forecast at time n� as follows

�� replace the unknown Xn�k by their forecast fnk k 
 �

�� 'forecasts� of Xn�k �k 	 �� are simply the known values
� since 	t is white noise the optimal forecast of 	n�k �k 
 �� is simply zero

�� 'forecasts� of 	n�k �k 	 �� are the known values of the residuals

The process

��L�Xt �  �L�	t

may be written

Xt � c�L�	t

where c�L� is an in�nite polynomial in L such that

��L�c�L� �  �L�

write

c�L� � co � c�L� � � �

where ci may be evaluated by equating coe
cients�

Xn�h � c�	n�h � c�	n�h�� � � � � �ch	n � ch��	n�� � � � �
fnh � ch	n � ck��	n��
Thus the forecast error is given by

enh � Xn�h � fn�h

� c�	n�h � c�	n�h�� � � � �� ch��	n��

�
h��X
j��

cj	n�h�j

�



As the ei are independent the variance of the forecast error is given by

Vh � E
�
e�nh

�
� ���

h��X
j��

c�j

A similar method will be used for ARIMA processes� The computations will
be completed by computer� These estimates of the forecast error variance will
be used to compute con�dence estimates for forecasts�

��� Seasonal Box Jenkins

So far the time series considered do not have a seasonal component� Consider
for example a series giving monthly airline ticket sales� These sales will di�er
greatly from month to month with larger sales at Christmas and during the
holiday season� In Ireland sales of cars are often put o� until the new year
in order to qualify for a new registration plate� We may think of many such
examples� In Box�Jenkins methodology we proceed as follows�

If the seasonal properties repeat every s periods then Xt is said to be a
seasonal time series with periodicity s� Thus s � � for quarterly data and
s � �� for monthly data and possibly s � � for daily data� We try to remove the
seasonality from the series to produce a modi�ed series which is non�seasonal�
to which an ARIMA model could be �tted� Denote the nonseasonal series by
ut� Box Jenkins proposed the seasonal ARIMA �lter�

�s�L
s���� Ls�DXt �  s�L

s�ut

where

�s�L
s� � �� ��sL

s � ��sL
�s � � � � � �PsL

Ps

 s�L
s� � �� ��sL

s � ��sL
�s � � � � � �QsL

Qs

ut is then approximated using the usual ARIMA representation �notation as
before�

��L���� L�dut �  �L�	t

and ut is ARIMA�p� d� q��

Substituting for ut

��L���� L�d�s�L
s���� Ls�D �  �L� s�L

s�	t

This is known as a seasonal ARIMA �SARIMA� �p� d� q�� �P�D�Q�s pro�
cess�

In processing such a a series we follow the same cycle of

�� provisional identi�cation

�



�� estimation

� testing

and �nally forecasting as in the non�seasonal model�

��	�� Identi
cation

We now have six parameters pdqPD and Q to identify�

Step �� Identify a combination of d and D required to produce stationarity� If
the series is seasonal the autocorrelogram will have spikes at the seasonal
frequency� For example quarterly data will have high autocorrelations at
lags �� �� �� etc� Examining these will indicate the need for seasonal
di�erencing� If seasonal di�erencing is required then the autocorrelogram
must be reestimated for the seasonally di�erenced series� Identi�cation of
d proceeds similarly to the non seasonal case� An extension of the Dickey�
Fuller tests due to Hylleberg� Engle� Granger and Yoo exists and may be
used� These problems

((((((((((((((((((((((((((((((((((((((((((((((((

Insert Examples

(((((((((((((((((((((((((((((((((((((((((((((((

Step �� Once d andD are selected we tentatively identify p� q� P and Q from the
autocorrelation and partial autocorrelation functions in a somewhat simi�
lar way as in the non�seasonal model� P and Q are identi�ed by looking at
the correlation and partial autocorrelation at lags s� �s� s� � � � �multiples
of the seasonal frequency�� In identifying p and q we ignore the seasonal
spikes and proceed as in the nonseasonal case� The procedure is set out in
the table below� AC and PAC are abbreviations for the autocorrelogram
and partial autocorrelogram� SAC and SPAC are abbreviations for the
AC and PAC at multiples of the seasonal frequency� Bear in mind that
we are likely to have very few values of the SAC and SPAC� For quarterly
data we may have lags � � �� and probably ��� For monthly data we have
�� and �� and possibly � �unless the series is very long�� Identi�cation
of P and Q is very approximate� The need for parsimony must be borne
in mind�
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Examples of Identi�cation
Properties Inference
SAC dies down� SPAC has spikes
at L� �L� � � � � PL and cuts o�
afterPL

seasonal AR of order P

SAC has spikes at lags
L� �L� � � � � QL and SPAC dies
down

seasonal MA

SAC has spikes at lags
L� �L� � � � � PL SPAC has spikes
at lags L� �L� � � � � QL and both
die down

use either

� seasonal MA of order Q or

� seasonal AR of order P
� �Fit MA �rst�

no seasonal spikes P � Q � �
SAC and SPAC die down possible P � Q � �

Important systems are

�� Xt � �� � ��L� ��L��� � ��sL
s � ��sL

�s�	t

�� ��� ��L���� ��sL
s�Xt � �� � ��L��� � ��sL

s�	t

� xt � �� � ��L� �sL
s � �s��L

s���	t

or

�� ��� d� ��� ��� D� ��s
�� ��� d� ��� ��� D� ��s
� is strictly a non�seasonal ��� d� s� �� with restrictions on the coe
cients�

�� Automatic Box Jenkins

The procedure outlined above requires considerable intervention from the statis�
tician�economist completing the forecast� Various attempts have been made to
automate the forecasts� The simplest of these �ts a selection of models to the
data� decides which is the 'best� and then if the 'best� is good enough uses
that� Otherwise the forecast is referred back for 'standard� analysis by the
statistician�economist�

The selection will be based on a criterion such as the AIC �Akaike	s In�
formation Criterion�� FPE �Forecast Prediction Error�� HQ �Hannon Quinn
Criterion�� SC �Schwarz Criterion� or similar� The form of these statistics are
given by
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AIC � ln %�� �
�

n

HQ � ln %�� �
n ln�lnn�

n

SC � ln %�� �
lnn

n

The FPE can be shown to be equivalent to the yCI� %�� is the estimate of
the variance of the model under assessment� The chosen model is that which
minimises the relevant criterion� Note that each criterion consists of two parts�
The variance of the model will decrease as the number of parameters is increased
�nested models� while the second term will increase� Thus each criterion pro�
vides a way of measuring the tradeo� between the improvement in variance and
the penalty due to over�tting�

It should be noted that AIC may tend to overestimate the number of pa�
rameters to be estimated� This does not imply that models based on HQ and
SC produce better forecasts� In e�ect it may be shown that asymptotically AIC
minimizes ��step forecast MSE�

Granger and Newbold ������ claim that automatic model �tting procedures
are inconsistent and tend to produce overly elaborate models� The methods
provide a useful additional tool for the forecaster� but are not a fully satisfactory
answer to all the problems that can arise�

The behaviour of the sample variances associated with di�erent values of d
can provide an indication of the appropriate level of di�erencing� Successive
values of this variance will tend to decrease until a stationary series is found�
For some series it will then increase once over�di�erencing occurs� However� this
will not always occur �consider for example an AR��� process for various values
of ���� The method should� therefore� only be used as an auxiliary method of
determining the value of d�

ARIMA processes appear� at �rst sight� to involve only one variable and its
own history� Our intuition tells us that any economic variable is dependent on
many other variables� How then can we account for the relative success of the
Box Jenkins methodology� Zellner and Palm ������ argue � � � � � � � ARMA
processes for individual variables are compatible with some� perhaps unknown
joint process for a set of random variables and are thus not necessarily 'naive��
'ad hoc� alternative models�� Thus there is an expectation that a univariate
ARIMA model might out�perform a badly speci�ed structural model�

The use of univariate forecasts may be important for several reasons�

�� In some cases we have a choice of modelling� say� the output of a large
number of processes or of aggregate output� leaving the univariate model
as the only feasible approach because of the sheer magnitude of the prob�
lem�

�� It may be di
cult to �nd variables which are related to the variable being
forecast� leaving the univariate model as the only means for forecasting�
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� Where multivariate methods are available the univariate method provides
a yardstick against which the more sophisticated methods can be evalu�
ated�

�� The presence of large residuals in a univariate model may correspond to
abnormal events�strikes etc�

�� The study of univariate models can give useful information about trends
long�term cycles� seasonal e�ects etc in the data�

�� Some form of univariate analysis may be a necessary prerequisite to mul�
tivariate analysis if spurious regressions and related problems are to be
avoided�

While univariate models perform well in the short term they are likely to be
outperformed by multivariate methods at longer lead terms if variables related
to the variable being forecast )uctuate in ways which are di�erent to their past
behaviour�
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Appendix A

REFERENCES

A�� Elementary Books on Forecasting with sec�
tions on Box�Jenkins

��� Bowerman� and O	Connell ������� Time Series Forecasting� Uni�ed Con�

cepts and Computer Implementation� Duxbury� This is a good introduc�
tion and is elementary and non�mathematical

��� Chat�eld ������� �st edition �������� �th edition�� Analysis of Time

Series�Theory and Practice� Chapman and Hall� This is a very good
introduction to the theory of time series in general at a not too advanced
level

�� Makridakis� Wheelwright and McGee ������ Forecasting� Methods and

Applications� Wiley� A large �
 ��� page textbook� that covers a wide
range of forecasting techniques without getting too involved in their the�
oretical development� It is much much more comprehensive than either �
or ��

A�� Econometric texts with good sections on
Box�Jenkins

��� Pindyck and Rubenfeld ������� Econometric Models and Economic Fore�

casting� McGraw�Hill� �recent edition ����� This is s very good introduc�
tory text� The new US edition contains a disk giving the data for all the
problems in the model� It is a pity that this disk has not been included
in the European version

��� Judge� Hill� Gri
ths� Lutkepohl and Lee ������� an introduction to the

theory and practice of econometrics� Wiley�

��� Judge� Gri
ths� Hill� Lutkepohl and Lee ������� The theory and practice of
econometrics� Wiley� ��� is a comprehensive survey of econometric theory

�



and is an excellent reference work for the practising econometrician�A
new edition must be due shortly� ��� is an introduction to ��� and is
very comprehensive �
 �� ��� pages�� It has a very good introduction to
non�seasonal Box�Jenkins

A�� Time�Series Books

��� Box� Jenkins ������� Time Series Analysis � forecasting and Control�
Holden Day This covers both theory and practice very well but theory
is advanced � very useful� if not essential� for practising forecasters

��� Granger� Newbold ������� Forecasting Economic Time Series� Academic
Press A very good account of the interaction of standard econometric
methods and time series methods� Some sections are di
cult but much of
the material will repay the e�ort involved in mastering it

��� Priestly ������� Spectra Analysis and Time Series� Academic Press� A
comprehensive look on time series analysis

���� Mills� T�C� ������� Time series techniques for economists� Cambridge Uni�
versity Press Well described by title � intermediate level � recommended
� written for economists

���� Brockwell and Davis ������ �nd edition� Time Series� Theory and Meth�

ods� Springer�Verlag An advanced book � probably the most advanced of
those listed here

���� Jenkins� G�M� ������� Practical Experiences with modelling and forecast�

ing time series� Gwilyn Jenkins and Partners �Overseas� Ltd� Jersey� The
object of this book is to present� using a series of practical examples� an
account of the models and model building methodology described in Box
Jenkins ������� It presents a very good mixture of theory and practice
and large parts of the book should be accessible to non�technical readers

��


