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EC2040 Topic 5 - Integration and Applications

Reading

1 Chapter 14 of CW

2 Chapters 19 and 20 of PR

Plan

1 Indefinite, definite, and improper integrals

2 Integration (and rules of)

3 Applications
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Introduction

Integration is useful in a number of ways in economics:

1 Microeconomics: consumer surplus; i.e. the difference between what
a consumer is willing to pay and what they actually pay.

2 Macroeconomics: stock (e.g., capital) and flow variable (e.g.,
investment).

3 Finance: net present value of dividend (stock price)

All of these examples can be thought of as ‘areas under curves’.

Consumer surplus refers to the demand curve of a consumer; price and
quantity space.
The macro and finance examples are graphs with time on the
horizontal axis.
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Areas and Integrals

Let a and b denote real numbers, where a < b.

Let f (x) be a continuous function (we will focus on functions with
one variable).

What is the area bounded by the curve y = f (x), the vertical lines
x = a and y = b and the x-axis?

What we can do - as a first approximation - is cut the area into
rectangles of equal width, where the top right-hand corner touches
the curve y = f (x).

[Diagram]
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Areas and Integrals

Say we split the area into 10 rectangles, where x0 = a and x10 = b.
The sum of the rectangle areas is the,

(x1 − x0) f (x1) + (x2 − x1) f (x2) + ... + (x10 − x9) f (x10)

=
10

∑
i=1

= (xi − xi−1) f (xi )

This method leads to some errors, basically, over or underestimation
of the area. We can reduce these errors by creating many
sub-intervals.

The sum of the areas of the rectangles tends to a limit as the length
of the subintervals tends to zero. This limit gives the area.

b∫
a

f (x)dx

This is also called definite integral.
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Some Simple Examples

Consider the simplest function, a constant. That is, y = f (x) = C .
Graphing this is (x , y) space gives a straight line [diagram]. The are
between a and b is then height times width. That is
(C − 0)× (b− a).

However, we can also show,

b∫
a

Cdx = C × (b− a)

Likewise, consider the 45 degree line [diagram]. That is
y = f (x) = x . This involves finding the area of a rectangle
((a− 0)× (b− a)) and a triangle ( 1

2 (b− a)2).

However, we can also show,

b∫
a

xdx = ab− a2 +
1

2

(
a2 − 2ab + b2

)
=

1

2

(
b2 − a2

)
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Integration and Differentiation

Another useful way of thinking about integration is that it is the
reverse process of differentiation.

The integral or the antiderivative of a function f (x) is a function
F (x) such that F ′(x) = f (x).

The function F (x) is referred to as the indefinite integral.

Note that the derivatives of F (x) and F (x) + C (C is a constant) are
the same. Hence, the indefinite integral of a function f (x) is only
specified up to a constant.∫

f (x)dx = F (x) + C

In words, “the integral of f (x) with respect to x is F (x) plus a
constant.”
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The Definite Integral Revisited

Again, let f (x) be a continuous function on the interval [a, b].
Suppose that the function F is an antiderivative of f .

The difference F (b)− F (a) is then referred to as the definite integral

of f over [a, b]. Why is F (b)− F (a) =
∫ b
a f (x)dx?

If F (x) is an antiderivative of f then G (x) = F (x) + C is also an
antiderivative for any constant C . However, the value of the definite
integral does not depend on the choice of the antiderivative, so,

G (b)− G (a) = F (b) + c − [F (a) + c ] = F (b)− F (a)

In practical terms, we can then just ignore the constant term when
evaluating definite integrals.
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Improper Integral

Sometimes we need to take integrals when the interval is not
bounded. Examples:

1 Evaluating the present value of an ‘infinite’ stream of benefits of a
financial asset.

2 Evaluating the consumer surplus of a constant elasticity demand
function q = ap−ε (why? it doesn’t hit the axis).

In this case, we have, for example,∫ ∞

x0

f (x)dx

To motivate the analysis of such integrals, we’ll use some examples,
later on.
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Properties of the Integral

Since the indefinite integral is the “reverse” of differentiation, we can
use the properties of the derivative to derive the following regarding
indefinite integrals.

1
∫

af (x)dx = a
∫

f (x)dx [multiple]

2
∫

[f (x) + g(x)] dx =
∫

f (x)dx +
∫

g(x)dx [sum]

3
∫

xndx = xn+1

n+1 + C if n 6= −1 [power rule]

4
∫

1
x dx = ln x + C [log rule]

5
∫

exdx = ex + C [exponential rule]

6
∫

ef (x)f ′(x)dx = ef (x) + C ,

7
∫

[f (x)]n f ′(x)dx = 1
n+1 [f (x)]n+1 + C if n 6= −1,

8
∫

1
f (x) f ′(x)dx = ln f (x) + C .
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Example:
∫

(x3 + x2)dx

By the second property [sum],
∫

(x3 + x2)dx =
∫

x3dx +
∫

x2dx .

By the third property∫
x3dx = x4/4 + C1 and

∫
x2dx = x3/3 + C2

where C1 and C2 are some constants.

Since C1 and C2 are constants, we can combine them into one and
write, ∫

(x3 + x2)dx = x4/4 + x3/3 + C

In general, when computing indefinite integrals which involve
computing several integrals, we do all the integrals and place a
constant at the end.
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Example:
∫ [

ex + x2+2x+2
x2+2

]
dx

Using the second property [sum], the integral is∫
exdx +

∫
1dx +

∫
2x

x2+2
dx .

We know,
∫

exdx +
∫

1dx = ex + x + C

Property 8 states,
∫

1
f (x) f ′(x)dx = ln f (x) + C and note the

derivative of x2 + 2 is 2x , i.e., f (x) = x2 + 2.

We conclude,
∫

2x
x2+2

dx = ln(x2 + 2) + C , and,

∫ [
ex +

x2 + 2x + 2

x2 + 2

]
dx = ex + x + ln(x2 + 2) + C

This looks bad to begin with, but in the end, it turns out to be easy
to work with.
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Another Example:
∫ [ (x−2)2

x0.5

]
dx :

Expanding the expression inside the integral sign, we have,

∫ (x − 2)2

x0.5
dx =

∫
x2 − 4x + 4√

x
dx =

∫
(x

3
2 − 4x

1
2 + 4x−

1
2 )dx

Using Property 2,

∫ (x − 2)2

x0.5
dx =

∫
x

3
2 dx −

∫
4x

1
2 dx +

∫
4x−

1
2 dx

From Property 3, we get,∫ (x − 2)2

√
x

=
2

5
x

5
2 − 8

3
x

3
2 + 8x

1
2 + C
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Integration by Substitution and Parts

There are two more powerful rules for integration. They are related
to the chain rule and product rules for differentiation.

1 Integration by substitution. This technique operates through a
“change of variable” which converts an intractable integral into a
form where it can be solved.

2 Integration by parts. This is direct consequence of the product rule.
The equivalent expression is,∫

u′vdx = uv −
∫

uv ′dx
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Integration by Substitution, Example:
∫

(x2 + 10)502xdx

Examples are the easiest way to understand the substitution rule.
Consider expanding (x2 + 10)50 - this will yield 51 terms which we
can then individually integrate.

However, define a new variable z = x2 + 10. Totally differentiating
this gives dz = 2xdx .

Now substitute for x2 + 10 and 2xdx to get,∫
(x2 + 10)502xdx =

∫
z50dz

This latter integral is now easily evaluated using Property 3:∫
z50dz = z51/51 + C .

Substitute back for z to get∫
(x2 + 10)502xdx = z51/51 + C = (x2 + 10)51/51 + C
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Integration by Substitution, Example:
∫

x
√

1 + xdx

Define u =
√

1 + x . Taking the square on both sides gives
u2 = 1 + x ; taking the total differential of this gives 2udu = dx .

Now substitute (note that since u2 = 1 + x , we have x = u2 − 1) and
we get∫

x
√

1 + xdx =
∫

(u2 − 1)u(2udu) =
∫

2u2(u2 − 1)du

=
∫

2u4du −
∫

2u2du = (2/5)u5 − (2/3)u3 + C

Now substitute back for u to get,∫
x
√

1 + xdx = (2/5)(1 + x)5/2 − (2/3)(1 + x)3/2 + C

Differentiate the expression back to confirm that you do get x
√

1 + x .
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Final Example:
∫

x3

(1+x2)3 dx

Let u = 1 + x2 so that du = 2xdx and x2 = u − 1.

Without substitution, we can write the above integral as∫
x3

(1+x2)3 dx =
∫

1
2

x2

(1+x2)3 2xdx .

Now use our substitution.∫
1

2

x2

(1 + x2)3
2xdx =

∫
1

2

(u − 1)
u3

du

=
∫

1

2

[
(u − 1)u−3

]
du = − 1

2u
+

1

4u2
+ C

Substituting for u, the integral works out to, − 1
2(1+x2) + 1

4(1+x2)2 + C .

This is a little more tricky. Figuring out what we substitute in to
begin with is the important part.
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Integration by Parts

Integration by Parts is a consequence of the product rule for
differentiation. Recall, that is,

(uv)′ = u′v + uv ′

Integrating both sides of the above expression gives∫
(uv)′dx =

∫
u′vdx +

∫
uv ′dx

Since
∫

(uv)′dx = uv by definition, we have,∫
u′vdx = uv −

∫
uv ′dx

The first term on the RHS is the product of the integral of u
and v and the second term is the integral of a product function
which consists of the integral of u and the derivative of v .
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Integration by Parts, Example:
∫

x2exdx

Try substitution. It is not useful.

Instead, use integration by parts and treat x2 as the function v and
ex as the function u′. We have,∫

u′vdx = uv −
∫

uv ′dx ⇔∫
(ex )(x2)dx = ex (x2)−

∫
ex (2x)dx

This doesn’t really solve the problem, but we can apply integration by
parts (again!) to the second term on the right hand side with ex as
the function u′ (as before) and now 2x as the function v .∫

u′vdx = uv −
∫

uv ′dx ⇔∫
ex (2x)dx = ex (2x)−

∫
ex (2)dx = 2xex − 2ex
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Integration by Parts, Example:
∫

x2exdx

What does all this substitution get us?

We need to combine both results.∫
(ex )(x2)dx = ex (x2)−

∫
ex (2x)dx︸ ︷︷ ︸

=2xex−2ex

Adding a constant gives the final result.∫
x2exdx = x2ex − (2xex − 2ex ) + C = x2ex − 2xex + 2ex + C

Again, we have integrated a difficult looking function quiet easily.
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Integration by Parts, Extended Example (I)

Consider the more difficult function,
∫

x ln(x + 2)dx .

Write x ln(x + 2) as 1 • [x ln(x + 2)], and choose
u′ = 1, v = x ln(x + 2).

We then have,∫
u′vdx = uv −

∫
uv ′dx∫

1 • [x ln(x + 2)]dx = x [x ln(x + 2)]−
∫

x

[
ln(x + 2) +

x

x + 2

]
︸ ︷︷ ︸

use the chain rule

dx
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Integration by Parts, Extended Example (II)

By the sum of terms,∫
x ln(x + 2)dx

once

= x2 ln(x + 2)−
∫

x ln(x + 2)d

twice

x −
∫

x2

x + 2
dx

⇒ 2
∫

x ln(x + 2)dx = x2 ln(x + 2)−
∫

x2

x + 2
dx

Finally, ∫
x ln(x + 2)dx =

1

2
x2 ln(x + 2)− 1

2

∫
x2

x + 2
dx
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Integration by Parts, Extended Example (III)

We are now left with the task of finding
∫

x2

x+2 dx .

Write x2 as x2 − 4 + 4 and note that, (x2 − 4) = (x − 2)(x + 2).

Hence, ∫
x2

x + 2
dx =

∫ (x − 2)(x + 2)
(x + 2)

dx︸ ︷︷ ︸
=
∫

(x−2)dx

+
∫

4

x + 2
dx

Now use substitution to conclude that
∫

4
x+2 dx = 4 ln(x + 2) while∫

(x − 2)dx =
(
x2/2

)
− 2x .

Combining everything and adding a constant, it follows that,∫
x ln(x + 2)dx =

1

2
x2 ln(x + 2)− 1

2

∫
x2

x + 2
dx ⇒∫

x ln(x + 2)dx =
1

2
x2 ln(x + 2)− 1

2

[
x2

2
− 2x + 4 ln(x + 2)

]
+ C
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Applications of the Definite Integral

So far we have not specified the range over which we have integrated.

Using the definite integral is very useful in economics. For example:

1 The area under the demand curve between two prices p0 and p1

corresponds to the change in consumer surplus.

2 The area under the supply curve between two prices p0 and p1

corresponds to the change in producer surplus.

3 In finance, the present value of an asset can be approximated as a
definite integral.
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Some Examples of The Definite Integral

Suppose we want to evaluate a relatively simple function,
∫ 5

1 3x2dx .
This is simply x3 + C .

We know that the area we are interested in is between 1 and 5 on the
horizontal axis. Thus we have (it is also clear now why the constant

is not relevant),
∣∣x3 + C

∣∣5
1

= 125− 1.

Earlier, we integrated
∫

x ln(x + 2)dx by parts. We want to evaluate
this between 0 and 1. We have,∣∣∣∣12x2 ln(x + 2)− 1

2

[
x2

2
− 2x + 4 ln(x + 2)

]
+ C

∣∣∣∣1
0

=
1

2
12 ln(1 + 2)− 1

2

[
12

2
− 2 + 4 ln(1 + 2)

]
−
{
−1

2
[4 ln(2)]

}
=

1

2
ln(3)− 1

2

[
1

2
− 2 + 4 ln(3)

]
+

1

2
[4 ln(2)]

Dudley Cooke (Trinity College Dublin) Integration and Applications 25 / 39



Examples of Integration in Economics

The idea is, armed with all this knowledge, we can do some
economics.

We look at the following in particular.

1 Consumer’s surplus, CES demand functions, and the improper integral

2 Producer’s surplus and shut-down prices

3 The net present value of an asset (improper integral again)

4 Growth model (dynamics and integrating over time)
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Example I: Consumer Surplus

Demand curves are just downward sloped curves in price-quantity
space. If prices change, consumer welfare changes. We can
reformulate this point and ask: How much would a consumer be
willing to pay if the price changed from p0 to p1, p0 > p1.

Direct gain to price change: (p0 − p1) q0. That is, the direct
saving on total expenditure based on the original amount, q0.

Indirect gain to price change: If prices fall a consumer can
purchase more of the good. She pays p (q0) for the first extra ∆q.
Then, p (q0 + ∆q) for the following ∆q, p (q0 + 2∆q) for the
following ∆q, and so on.

Net gain to price change:
∫ q1

q0
p (q) dq − [p1 (q1 − q0)]. Total

consumer surplus:
∫ p0

p1
q (p) dp.
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CES Demand Functions

To work all of this out we need to specify a demand function. We
usually start out by specifying a linear demand function as this looks
nice; say, q = 5− 3p. However, this isn’t really so useful as the point
elasticity is not a constant (check:
(dq/dp) (p/q) = −3 [p/ (5− 3p)]).

Consider the following demand function: q = 30p−2. This looks bad,
but turns out to be useful. Clearly, dq/dp < 0. However,
(dq/dp) (p/q) = −60p−3

(
p/30p−2

)
= −2 is a constant. That is,

at any point on the demand curve the elasticity of substitution is
constant.

In general, we want to find the consumer surplus of the demand
function q = p−ε at p = p0.
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CES Demand Functions and Consumer Surplus

We now run into more problems. It is clear that this function never
‘touches’ (it asymptotes to) the p axis. The linear demand function
didn’t suffer with this problem. Thus we now need to evaluate an
improper integral.

There are formal definitions for improper integrals, but we’ll use our
example to make the point.

Consumer Surplus can be computed as,∫ ∞

p0

p−εdp = lim
a→∞

∫ a

p0

p−εdp = lim
a→∞

1

1− ε

[
a1−ε − p1−ε

0

]
Note that the limit exists only when ε > 1. In this case, the first term
goes to zero as a increases, and so we have,

CS = − 1

1− ε
p1−ε

0
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Specific Example of CES Demand

Suppose we have the following demand function, q = 30p−2. We
know the elasticity is 2. Also suppose that the price is, p0 = 2. This
leads to the following:

CS (p0 = 2) =
∫ ∞

2
30p−2dp = lim

a→∞

∫ a

2
30p−2dp

= 30 lim
a→∞
|−1/p|a2 = 30 lim

a→∞
|0− (−1/2)|a2 = 15

Now consider the alternative CES function, q = 5− p1/3. This looks
similar, but presents less of a problem as it clearly touches both the p
and q axis. If p = 0 then q = 5. If q = 0 then p = 53 = 125. Now
suppose p0 = 2. We then have the following:

CS (p0 = 4) =
∫ 125

5

(
5− p1/3

)
dp =

∫ 125

5
5dp −

∫ 125

5
p1/3dp

=
∣∣∣∣5p − 3

4
p4/3

∣∣∣∣125

5

= 605− 464 = 141
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Example II: Marginal Cost and Shut-Down Prices

Suppose we want to understand how the producer surplus of a firm
changes as the price of it’s product changes (we will assume perfect
competitive where price is given).

Also suppose the only information we have is the firms marginal cost
(that is, how costly it is to produce an additional unit).

If we had the total cost function we could differentiate it and find the
marginal cost function. In that case we can do the opposite.
Integrate the marginal cost function and find total costs.

We find the following.∫
MC (q) dq = VC (q) + const

fixed costs
= TC (q)

Why is fixed cost= const? If we set q = 0, we get, TC (0) = const.
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Shut-Down Prices

We need to be careful with this analysis. The profit maximizing
condition for perfectly competitive firms is price equal to marginal
costs; that is, p = MC (q).

However, firms will only produce if p > min AVC (q).

If p > min AVC (q) is violated, the firm will shut down (that is,
produce zero). Using the indefinite integral allows us to calculate
AVC (q) and we can therefore work out the shut down price of a firm.
That is, we can find out the specific p where the firm chooses q = 0?

To work through all of this we need to assume some more about
MC (q).
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Shut-Down Prices for a Specific Case

Assume the following marginal cost function:

MC (q) = 3q2 + 4q + 2. In this case,
∫ (

3q2 + 4q + 2
)

dq implies,

TC (q) = q3 + 2q2 + 2q + fixed costs

So, given marginal costs, VC (q) = q3 + 2q2 + 2q. We also know,
VC (q) = AVC (q) /q = q2 + 2q + 2.

Two properties of AVC (q) are crucial. First,
dAVC (q) /dq = 2q + 2 ≥ 0. Second, AVC (0) = 2.

Given this information we know that a perfectly competitive firm will
not produce at a price less than 2. That is, p = 2 is the shut-down
price.

For a price greater than or equal to 2, we have
p = MC (q) = 3q2 + 4q + 2. The next question is what q will we
get for p > 2? To find that, we need to solve a quadratic equation.
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Solving for Quantities at a Given Price

Suppose that we want to evaluate producer surplus at p = 9. We
know q > 0 at this price. Specifically, 9 = 3q2 + 4q + 2. That is,
3q2 + 4q − 7 = 0. However, mathematical, there are two q’s that
satisfy this condition. Economically, there will only be one. We can
see this by applying the quadratic formula.

Suppose we have aq2 + bq + c = 0. The two solutions are:

(q1, q2) =
[
−b±

(
b2 − 4ac

)0.5
]

/2a.

In our example, a = 3, b = 4, c = −7. That is:

q1 =
−b +

(
b2 − 4ac

)0.5

2a
=
−4 + (16− 4 · 3 · (−7))0.5

6
= 1

q2 =
−b−

(
b2 − 4ac

)0.5

2a
=
−4− (100)0.5

6
= −7

3

Clearly, q2 < 0 cannot be the answer. So, we conclude at p = 2,
q = 0 and p = 9, q = 1.
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Calculating Producer Surplus

With all this information we can now find producer surplus. To do
that, we evaluate a definite integral between 0 and 1. 0 relates to
the shut down price and 1 relates to p = 9, which we have chosen to
consider. ∫ 1

0
[p −MC (q)] dq =

∫ 1

0

(
9− 3q2 − 4q − 2

)
dq∣∣−q3 − 2q2 + 7q

∣∣1
0

= −1− 2 + 7 = 4

We can therefore also ask what happens to producer surplus as price
changes. All we need to do is repeat the above analysis for a
different price. For example (try this at home), p = 41 implies

(q1, q2) = (3,−13/3). We now evaluate,
∫ 3

0 [p −MC (q)] dq and

compare this to
∫ 1

0 [p −MC (q)] dq.
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Example III: Present Value of an Asset

Suppose that an asset pays b every year from now. Since a Euro
today is not the same as having it a year from now, we discount
future benefits. If the discount rate is r , then the benefit b received

T years into the future is worth
b

(1 + r)T
in today’s terms.

Thus, the present value of an asset paying b every year into the future
is

PV =
b

(1 + r)0
+

b

(1 + r)1
+ ... =

∞

∑
t=0

b

(1 + r)t

When time becomes ‘continuous’ it can be shown that the present
value of an asset paying an amount at a time T into the future is
be−rT . In this case, the present value of the asset is

PV =
∫ ∞

0
be−rtdt = lim

a→∞
−b

r

[
e−ra − 1

]
=

b

r

This follows because e−ra goes to zero as a becomes very large.
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Example IV: The Domar Growth Model

Investment is a flow and capital is a stock variable. They have the

following relationship: I (t) = dK (t)
dt .

In the Domar Growth model, the rate of change of investment has
two effects:

1 Multiplied effect on aggregate demand ⇒ dY (t)
dt = dI (t)

dt
1
s , where s is

the marginal propensity to save.

2 An effect on productive capacity.

Skipping some of the details (see CW), we find the following.

dI (t)
dt

1

I (t)
= ρs

where ρ is the capacity-capital ratio.
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Solving the Model

We can ‘solve’ this model using the techniques/concepts developed
above.

Integrating both sides implies,∫
dI (t)

dt

1

I (t)
dt =

∫
1

I (t)
dI (t) = ln |I (t)|+ c1

and
∫

ρsdt = ρst + c2

Together, we have,

ln |I (t)| = ρst + C

⇔ exp (ln |I (t)|) = exp (ρst + C )
I (t) = A exp (ρst) where A ≡ exp (C )
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Implications of the Domar Model

At the beginning of time (i.e., t = 0), the rate of investment is
I (0) = A as exp (0) = 1 (recall, ln(1) = 0).

Now we can determine the time path of investment from time zero to
time t as,

I (t) = I (0) exp (ρst)

Thus, to maintain a balance between capacity and demand over time
the rate of investment must grow at the exponential rate of ρs.

Higher capacity-capital ratio or marginal propensity to save requires a
higher growth rate.
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