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The Random Walk Hypothesis claims that stock price movements are 

random and cannot be predicted from past events.  A random system 

may be unpredictable but an unpredictable system need not be 

random.  The alternative is that it could be described by chaos theory 

and although seem random, not actually be so.  Chaos theory can 

describe the overall order of a non-linear system; it is not about the 

absence of order but the search for it. In this essay Ciarán Doran 

O’Fathaigh explains these ideas in greater detail and also looks at 

empirical work that has concluded in a rejection of the Random Walk 

Hypothesis.  

 

Introduction 

 

This essay intends to put forward an alternative to the Random Walk Hypothesis.  

This alternative will be that systems that appear to be random are in fact chaotic. 

Firstly, both the Random Walk Hypothesis and Chaos Theory will be outlined.  

Following that, some empirical cases will be examined where Chaos Theory is 

applicable, including real exchange rates with the US Dollar, a chaotic attractor for 

the S&P 500 and the returns on T-bills.   

 

 

The Random Walk Hypothesis 

 

The Random Walk Hypothesis states that stock market prices evolve according to a 

random walk and that endeavours to predict future movements will be fruitless.  There 

is both a narrow version and a broad version of the Random Walk Hypothesis.   

Narrow Version: 

The narrow version of the Random Walk Hypothesis asserts that the movements of a 

stock or the market as a whole cannot be predicted from past behaviour (Wallich, 

1968).  This would suggest that an investor cannot beat the market, yet there are many 

stories of those who have.  This can partially be attributed to the fact that those who 

do not beat the market, i.e. those who perform worse than the market are slow to 

publicise their failures.     

Broad Version: 

The broader version of the Random Walk Hypothesis expands on the narrow version, 

claiming that „…in a well functioning market, all known information has already 

[been] discounted‟ (Wallich, 1968: 160).  Similar to the Efficient Market Hypothesis, 

this broad version, if correct, demonstrates even further that one cannot out-perform 

the market.  If new information becomes available, any past information becomes 

irrelevant, as it has already caused any market movements that it was capable of. 



Possible Flaws with in the Broad Version RWH 

The broad version of the Random Walk Hypothesis assumes that all information is 

reflected immediately in the prices of stocks and this means that past information has 

no effect on stock price movements in the future. There are two flaws with the 

fundamental assumptions in this theory. 

 

Firstly, there is the assumption that all investors have the same access to the same 

information. This is surely not the case. Reliable and detailed information is usually 

obtained from a paid service, or through the employment of analysts - resources not 

available to every investor. Also, there is the assumption that all investors act upon 

the information at the same time. Investors receiving information up to several hours 

after it becomes public may still act on it. Naturally, this affect prices. 

 

Secondly, the effect of information obtained at time t may not be fully understood 

without information at time t+1. This could lead to the effects of information from the 

past compounding with the effects of information subsequentially released.  Thus, the 

past information can still have an effect on the market prices. 

 

 

Random vs. Unpredictable 

 

Before elaborating on the nature of a chaotic and complex system, it is necessary to 

distinguish between two concepts: random and unpredictable. These two words are 

generally used interchangeably, and generally this does not pose a problem in 

everyday usage. However, when discussing the nature of a particular system and 

deciding how best to analyse it, it is appropriate to be pedantic. The best way to 

distinguish the subtleties between these two concepts is by illustration of their 

application to a given system.  For the purposes of example, the weather shall be used, 

not least because it was the study of this system that led to the discovery of chaos 

theory.   

Unpredictable: 

The weather is unpredictable.  By this it is meant that it would not be possible to 

gauge at this moment what the weather will be in six hours‟ time.  Perhaps it will be 

raining, perhaps not.  A meteorologist, it would be assumed, would be able to take 

into account more information in making what essentially amounts to an educated 

guess. The odds of being correct would increase. However, he would not be 

guaranteed to be correct. Also, as we extend the timeline, the likelihood of being 

correct would decrease.   

Random: 

The weather is not random however. If, at midday today, it is seven degrees and 

raining, it is fairly certain that it will not be twenty four degrees and sunny six hours 

later. This is because there are deterministic relationships at play here. There are 

many variables that affect the weather, many of which may not be taken into 

consideration when making predictions about future weather conditions.   

The Distinction: 

It seems then that a clear distinction can be made. Unpredictable events or systems 

can be described as those that we are unable to forecast, or are only able to partially 



forecast, due to a lack of information. Random systems are systems in which no 

deterministic relationship exists.   

 

Chaos Theory 

 

Chaos is a non-linear deterministic process, which looks random (Hsieh, 1991). The 

explanation of the concept is, ironically, not overly complex. There are several 

characteristics, which, once properly understood, lead to a functional understanding of 

the idea. They are: 

 

 Sensitive dependence on initial conditions. 

 Apparent randomness disguising deterministic relationships. 

 Strange Attractors (also known as Chaotic Attractors or Fractal Attractors). 

 Fractal Dimension. 

Sensitive Dependence on Initial Conditions: 

The first characteristic of chaotic systems that will be discussed is possibly the most 

important. This is due to the fact that the chaotic nature of a system‟s evolution arises 

from it. In a standard statistically modelled system, one expects that, if the 

independent variable is altered by some proportion, then there will be a similar or 

predictable change in the dependant variable. This is the reason that such systems are 

so widely used: they facilitate prediction of events.   

 

However, in a chaotic system, an infinitesimally small change in the initial conditions 

can cause the model to evolve in a completely different fashion. This phenomenon 

was discovered by a meteorologist, Edward Lorenz, while he was running a weather-

predicting model  In 1961, he wished to re-examine a certain portion of the results 

and, in the interest of expedience, he used the data from a read-out which he had 

obtained previously for the beginning of that sequence, rather than re-running the 

entire model.  The system evolved in a completely different fashion from his earlier 

models. The reason, he discovered, was that during the initial run, the computer had 

used figures to six decimal places but he had only printed out figures to three decimal 

places. A change of just over a thousandth of a significant figure completely altered 

the model. This has very obvious implications for economics or finance systems if 

they are indeed found to be chaotic.   

Apparent Randomness Disguising Deterministic Relationships: 

The best explanation of this concept is through example. Consider a roulette wheel. 

The outcome is believed to be random and certainly seems that way on first 

observation. However, the result has several influencing factors: the speed and 

number of rotations of the wheel, the spin on the ball as it leaves the croupier‟s hand, 

the force the croupier uses to throw the ball, etc.  So what seems random is in fact 

deterministic. If the initial conditions were known, a better forecast of the result could 

be obtained. In the final section of this essay, further examples will be drawn from 

market data. 

Strange Attractors: 

So, it would seem that if an economic or financial system is chaotic, then it cannot be 

modelled. However, this is not the case. This is a crucial aspect of the theory; the 

point at which order arises from disorder. While the positions of data at a specific 



time cannot necessarily be predicted, quite accurate models of the overall behaviour 

of the system can be created.   

 

An attractor is the equilibrium level of a system, but should not be confused with an 

econometric equilibrium, which is a narrow form of an attractor. An attractor is the 

level or value a system attempts to regain after external effects have abated (Peters, 

1991). 

 

A strange (or chaotic) attractor is present in a system that tends towards a set of 

possible values. The possible values are infinite in number but limited in range. 

Chaotic attractors are not periodic, i.e. they do not have any repetition regardless of 

the length of the timeline (Peters, 1991). Attractors are labelled as strange or chaotic 

when they have a non-integer dimension.  

Fractal Dimension: 

The most basic way to understand fractal dimension is as a measure of how chaotic a 

system is; the closer to the higher integer the dimension is between, the more chaotic 

the system.  Again, chaotic does not mean random.  On a more complex scale, fractal 

dimension is a statistical quality, giving a measure of how completely a fractal fills 

space.   

 

 

Empirical Examples Demonstrating Random Market Hypothesis Failures 

Real Exchange Rates: 

In his 1999 paper, In Choi examines whether the Random Walk Hypothesis is 

observed for real exchange rates. He uses the log-differenced US real monthly 

exchange rates and certain other major currencies. In his paper he sets out a null 

hypothesis that a random walk is observed. The alternative hypothesis is that there is 

serial correlation present. He does not propose any specific model for the correlation, 

thus allowing both linear and non-linear dependence (Choi, 1999).   

 

The rates used are the US real exchange rates versus the Canadian dollar, French 

franc, German mark, Japanese yen, British pound and Swiss franc, for the periods 

1960:1 to 1993:11 (Choi, 1999). Several tests were run for each currency, and the 

results were mixed. In his conclusions, he states that „…for the full sample, the null is 

rejected at conventional significance levels for Japan, Switzerland and Britain‟ (Choi, 

1999: 306). Here the Random Walk Hypothesis is rejected, with the possibility arising 

of the presence of a non-linear system.   

 

A Chaotic Attractor for the S&P 500: 

In 1991, Edgar E. Peters examined the S&P 500 index in order to ascertain whether or 

not there was a chaotic attractor present. The dynamic observable used was the log-

linear deflated S&P 500. However, it was not the changes in the values that were 

recorded but the absolute values themselves. The reason for this is that using simply 

the percentage changes in prices may destroy the delicate non-linear structure present 

in the data (Peters, 1991). The results, again, help to refute the Random Walk 

Hypothesis. 

 



Firstly, he found that the fractal dimension of the detrended S&P 500 is 

approximately 2.33 (incidentally, this is the same fractal dimension as cauliflower). If 

the data were completely random, the dimension would have been an integer. Random 

data, as stated above, fills any space available to it. He states that „…the attractor is 

“chaotic”, with a positive Lyapunov exponent‟ (Peters, 1991: 61).   

 

Lyapunov exponents measure the loss in predictive power experienced by non-linear 

systems over time, by measuring the divergence of nearby trajectories over time.  A 

positive exponent indicates expansion while a negative one indicates contraction 

(Peters, 1991).  The positive Lyapunov exponent indicates that the system is subject 

to „sensitive dependence on initial conditions‟, another feature of chaotic systems, as 

mentioned above. When using Lyapunov exponents as a measure of divergence from 

initial trajectories, it is common to simply use the largest one. This is known as the 

Maximal Lyapunov exponent, MLE.    

 

Not only does this example refute the Random Market Hypothesis, but it also supports 

the presence of chaotic behaviour in the market. Due to sensitive dependence on 

initial conditions, attempts to model its behaviour stochastically could lead to 

extremely large errors, which grow exponentially as time goes on.  

Returns on T-Bill Rates: 

In a different paper in 1991, Larrain rightly asserts that if the past interest rates affect 

the future evolution of interest rates, then the Random Market Hypothesis is false. If 

this turns out to be the case, then a genuine and justified use of investment tools and 

strategies can be made to generate a profit (Larrain, 1991).   

 

According to Larrain, both fundamentals and technical analysis can be used to 

determine future interest rates.  Moreover, the relationships are non-linear in nature 

(ibid.). This not only discredits the Random Market Hypothesis, but gives further 

credence to the idea that markets are chaotic in nature.   

 

Before presenting the results, the issue of a series being random some of the time, and 

deterministic the remainder of the time is addressed. Instead of asking whether or not 

the T-bill series is random, he examines the process which creates the series to 

ascertain if it may, at times, have a native „random-number‟ generator (ibid.). 

 

The conclusions reached by Larrain are as follows. Firstly, there is a non-linear 

structure in the series for T-bill rates and secondly, this non-linear structure, while not 

explicitly guaranteeing mathematical chaos, does allow for the possibility of it arising, 

under certain market conditions (ibid.). 

 

Conclusions and Remarks 

 

After examining the possibility of chaos theory being an alternative to the Random 

Market Hypothesis, the following conclusions can be drawn from the academic 

literature and empirical data: 

 

1. The Random Walk Hypothesis is not correct in its narrow or broad form as is 

shown by the empirical data. 



2. It is possible that chaos theory could be used to describe some markets but is 

not to be adopted as the complete alternative. 

3. Where the situation arises that a system is not chaotic, it may very well be 

nonlinear, and so still requires that we do not assume randomness. 

 

In recent years there have seen an increasing tendency for economists to explore the 

ideas of chaos theory in search of explanations for events in the markets and the 

economy as a whole However, the concept is still in its infancy relative to many of the 

alternative quantitative tools which have been in use since econometrics first came to 

prominence, at the beginning of the twentieth century.  With continued research, there 

is a lot of potential to gain a better understanding not just of the markets, but in many 

other fields of economic theory, and to establish patterns and models in areas which 

were believed to be operating in disorder and randomness.      
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