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ANALYSIS OF UK INFLATION DYNAMICS USING ARCH AND 

ALLOWING FOR SEASONAL EFFECTS 
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Senior Sophister 
 

Inflation is the one of the economic phenomena that is in the 
spotlight of forecasting. In this paper David Morrissey evaluates 
the dependency of UK inflation on its previous values, 
extending the analysis to include seasonality later in the text. 
The econometric analysis is conducted using an ARCH model 
with various extensions that appears to be superior to its OLS 
counterpart. Finally, the author concludes that his model has 
sound explanatory and forecasting powers and suggests further 
extensions for analysis. 

 
 
Introduction 
 
This paper intends to explain how the evolution of inflation over time depends on its 
previous values. Inflation is known to exhibit time varying volatility, hence 
traditional regression models, which assume homoscedastistic variance are 
inadequate. I will attempt to overcome this problem by using an ARCH model. It is 
instructive to begin by looking at a plot of inflation against time, Figure 1. I used 
UK data, a series of 168 quarterly CPI observations from 1962 to 2003, found on the 
UK�s National Statistics website. 

It is quite apparent from inspection that there are periods in which the 
variance of inflation is high (the 1970s) and others when it is comparatively low (the 
late 1990s). Hopefully an ARCH model will help to explain these dynamics. 
 
The Model 

I am going to run an autoregression; regressing inflation on its lagged 
values. Seasonal effects are often encountered in quarterly data, to allow for this I 
will also include seasonal dummy variables. In this project, I am using dummies to 
allow only for differential intercepts in each quarter, not for differential slope 
coefficients 
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Figure 1: UK Inflation 1963 - 2003 

I will commence my analysis by regressing Inflation (Inf) on 5 lagged 
values of itself and 4 quarterly dummies. Note I do not include an intercept, so as to 
avoid the dummy variable trap.1  

 
πt = α1πt-1 + α2πt-2 + α3πt-3 + α4πt-4 + α5πt-5 + β1Q1 + β2Q2 + β3Q3 + β4Q4 + µt 

 
I will first use the traditional Ordinary Least Squares (OLS) method of 

estimation. The results are given in the table below. 
 
Table 1: UK inflation regression 

Regressor Coefficient Standard Error T-Ratio [Prob] 
 INF(-1)  .46734 .079784 5.8576[.000]  
 INF(-2)  .28542 .087220 3.2725[.001]  
 INF(3)  .019862 .090287  .21998[.826]  
 INF(-4)  .13337 .087221 1.5291[.128]  
 INF(-5) -.079349 .079622 -.99657[.321]  
 Q1  .25114 .21435 1.1716[.243]  
 Q2 1.3392 .21438 6.2468[.000]  
 Q3 -.56275 .23954 -2.3493[.020]  
 Q4  .054633 .21159  .25820[.797]  

                                                           
1 If I used 4 dummies and an intercept there would be perfect multicollinearity, the data matrix would be 
non-singular and estimation impossible.  
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Table 2: Diagnostic Tests 

*******************************************************************************
* Test Statistics * LM Version * F Version *
*******************************************************************************
* * * *
* A:Serial Correlation*CHSQ( 4)= 17.2499[.002]*F( 4, 150)= 4.4382[.002]*
* * * *
* B:Functional Form *CHSQ( 1)= .40350[.525]*F( 1, 153)= .37969[.539]*
* * * *
* C:Normality *CHSQ( 2)= 281.6049[.000]* Not applicable *
* * * *
* D:Heteroscedasticity*CHSQ( 1)= 19.1078[.000]*F( 1, 161)= 21.3796[.000]*
*******************************************************************************

A:Lagrange multiplier test of residual serial correlation
B:Ramsey's RESET test using the square of the fitted values
C:Based on a test of skewness and kurtosis of residuals
D:Based on the regression of squared residuals on squared
fitted values

The model explains the data quite well with an R2 = 0.64813. The F-Test 
for the joint significance of all the explanatory variables is also quite encouraging an 
F value of 35.4582 clearly rejecting the null that they have no explanatory power.  

 
Non White Noise Errors 

There are clearly quite severe problems with the residuals in this model 
with the diagnostics pointing towards serial correlation, non-normality and 
heteroscedasticity. Heteroscedasticity is however an encouraging sign for the 
presence of ARCH effects as we obviously expect non-constant variance. 

With reference to the problems discussed above we must treat the t-
statistics quoted with caution. However it is interesting to note that only the first 2 
lags of inflation appear to have explanatory power. For the next 3, we fail to reject 
the null that their coefficients are in fact 0. 

 
Testing Linear Restrictions using Wald Tests 

To investigate further the lack of explanatory power of the 3rd, 4th and 5th 
lags of inflation, I conducted a Wald test with the null hypothesis that, α3 = α4 = α5 
= 0. The Wald test is especially useful in this case as even in the absence of 
normally distributed residuals, it is asymptotically Chi Squared distributed. The 
Wald test returned a value W = 2.7806 with an associated p value of 0.427. Hence, 
we fail to reject H0, therefore in subsequent versions of the model I only consider the 
1st and 2nd lags. 

I conducted another Wald test to check the validity of including the 
seasonal dummies. In this the null hypothesis was that β1 = β2 = β3 = β4. This would 
indicate the absence of an intercept differential between any of the quarters. The 
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statistic returned was W = 43.1079 with an associated p value of 0.000. Hence we 
reject H0 and conclude that we were right to include the seasonal dummies. 

 
Testing for ARCH 

The arch model was first proposed by Engle in 1982. He suggested 
modelling conditional variance as a function of past squared residuals. 

 
ARCH(1) model: ht

2 = E(σt
2| Ωt-1) = γ0  + γ1ut-1

2
 

 
in general an ARCH(p) model includes p lags of squared residuals. 

 
The testing procedure for ARCH is hence to run OLS, as we have above 

then save the residuals and run an AR(p) regression on their squares. A Lagrange 
Multiplier (LM) test is then conducted with null hypothesis that the coefficients on 
each of the p lagged squared residuals is 0. It is shown by Engel 1982 that this test 
boils down to obtaining R2 from the AR(p) regression and then testing TR2 as χp

2. 
Microfit runs this test automatically see the output below,  

Table 3: Autoregressive Conditional Heteroscedasticity Test of Residuals (OLS Case)   
 
*******************************************************************************
Dependent variable is INF
List of the variables in the regression:
INF(-1) INF(-2) INF(-3) INF(-4) INF(-5)
Q1 Q2 Q3 Q4
163 observations used for estimation from 1963Q2 to 2003Q4

 
P = 1 
*******************************************************************************
Lagrange Multiplier Statistic CHSQ( 1)= 9.4400[.002]
F Statistic F( 1, 153)= 9.4055[.003]

 
P = 12 
*******************************************************************************
Lagrange Multiplier Statistic CHSQ(12)= 22.0917[.037]
F Statistic F( 12, 142)= 1.8552[.045]

*******************************************************************************

 
As evident above we reject the null hypothesis (at the 5% level of 

significance) of no arch effects for lag lengths of ut
2, 1 through 12. 

However, I was still unsure what lag length to use in my conditional 
variance function. So, I carried out a regression of ut

2 on 8 lags of itself to 
investigate the t-statistics. 
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Table 4: Ordinary Least Squares Estimation                        
 
*******************************************************************************
Dependent variable is USQ
155 observations used for estimation from 1965Q2 to 2003Q4

*******************************************************************************
 Regressor              Coefficient       Standard Error         T-Ratio[Prob]  
C .40073 .21735 1.8437[.067]
USQ(-1) .20324 .082675 2.4583[.015]
USQ(-2) .028079 .084211 .33343[.739]
USQ(-3) .052507 .084203 .62358[.534]
USQ(-4) .23428 .084148 2.7841[.006]
USQ(-5) -.054013 .084181 -.64162[.522]
USQ(-6) .036358 .084196 .43183[.666]
USQ(-7) .063798 .084197 .75771[.450]
USQ(-8) -.043619 .082383 -.52946[.597]

*******************************************************************************

With an R2 = 0.12852 
 
The only significant t-statistics are the 1st and 4th lags of ut

2 hence it appears 
that only they should be included in the conditional variance function. 

 
ARCH Estimation 

We are now trying to estimate the following model, 
 

πt = α1πt-1 + α2πt-2 + β1Q1 + β2Q2 + β3Q3 + β4Q4 + µt 
 
and we are going to assume the variance of µt follows the ARCH process 
 

var(µt) = ht
2 = γ0  + γ1ut-1

2 + γ2ut-4
2
 

 
When variances are estimated using an arch process, they will not be 

independent. This implies that Maximum Likelihood is a more efficient estimation 
procedure than Least Squares. For a proof of this see Engel 1982. 

For MLE it is necessary to make assumptions about the distributions of the 
stochastic disturbances µt. In this case, it is assumed they are normally distributed 
with mean 0 and variance ht

2.  
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Results from Arch estimation 
 
Table 5: GARCH(0,4) assuming a normal distribution converged after 91 iterations 

*******************************************************************************
Dependent variable is INF
166 observations used for estimation from 1962Q3 to 2003Q4

*******************************************************************************
Regressor Coefficient Standard Error T-Ratio[Prob]
INF(-1) .60157 .16043 3.7498[.000]
INF(-2) .27662 .10116 2.7346[.007]
Q1 .087743 .19189 .45725[.648]
Q2 1.3519 .15607 8.6622[.000]
Q3 -.85778 .26458 -3.2420[.001]
Q4 .13304 .21543 .61756[.538]

*******************************************************************************

The estimated model is hence: 
 

πt = (0.602)πt-1 + (0.277)πt-2 + (0.088)Q1 + (1.352)Q2 - (0.858)Q3 + (0.133)Q4 
 

with conditional variance function: 
 

ht
2 = 0.45  + (0.283)ut-1

2 + (0.110)ut-4
2 

 
All coefficients are significant at the 1% level, except for those on Q1 and 

Q4. The 1st and 2nd lags of inflation have a positive impact on a given period�s 
inflation, the first lag having a larger influence. It is also possible to isolate the 
equation for a given quarter with the dummy variables. For example the estimated 
equation for quarter 2 is:  
 

πt = 1.352 + (0.602)πt-1 + (0.277)πt-2 
 

The model has similar explanatory power to the one we estimated under 
OLS, the value of R2 = 0.62917 see plot below. However, we can have more faith in 
the estimates as we have addressed the severe heteroscedasticity problem evident in 
the earlier model. 

I now want to find some way to compare the OLS and the MLE ARCH 
models. I was thinking of comparing the dispersion of residuals, perhaps looking at 
outliers as in the Engel paper. However, I do not think this would be very instructive 
as we have a pre-defined the functional form for the variance of the ARCH residuals.  
Hence their distribution is endogenous to the model and does not give insight to the 
model�s adequacy. So I am going to compare the models in terms of their 
forecasting ability.  
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Figure 2: Plot of actual and fitted values 
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Forecast Comparison 

In comparing the models, I am using the version with 2 lags of inflation 
and the 4 dummies. I then estimate it using the observations from 1962�1999 and 
use this estimated model to forecast inflation for 2000-2003. 
 
 
OLS Forecast 
 
Table 6: Dependent variable is INF. 150 observations used for estimation from 1962Q3 to 1999Q4 

*******************************************************************************
Regressor Coefficient Standard Error T-Ratio[Prob]
INF(-1) .47034 .078577 5.9858[.000]
INF(-2) .33125 .078439 4.2230[.000]
Q1 .40141 .17928 2.2391[.027]
Q2 1.5898 .18210 8.7305[.000]
Q3 -.72121 .22320 -3.2313[.002]
Q4 .058426 .23008 .25394[.800]

*******************************************************************************
R-Squared .62818 R-Bar-Squared .61527
S.E. of Regression .96904 F-stat. F( 5, 144) 48.6578[.000]

Summary statistics for single equation dynamic forecasts 
*******************************************************************************
Based on 16 observations from 2000Q1 to 2003Q4
Mean Prediction Errors -.82998 Mean Sum Abs Pred Errors .82998
Sum Squares Pred Errors .84766 Root Mean Sumsq Pred Errors .92069

*******************************************************************************
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Figure 3: Plot of actual and single equation dynamic forecast(s) 

 Plot of Actual and Single Equation
Dynamic Forecast(s)
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ARCH forecast 

Table 7: GARCH(0,4) assuming a normal distribution converged after 146 iterations 

*******************************************************************************
Dependent variable is INF
150 observations used for estimation from 1962Q3 to 1999Q4

*******************************************************************************
Regressor Coefficient Standard Error T-Ratio[Prob]
INF(-1) .60962 .13884 4.3907[.000]
INF(-2) .25576 .10418 2.4550[.015]
Q1 .14987 .20087 .74610[.457]
Q2 1.4290 .17158 8.3286[.000]
Q3 -.89312 .25442 -3.5104[.001]
Q4 .19358 .24292 .79690[.427]

*******************************************************************************
R-Squared .61586 R-Bar-Squared .59692

Summary statistics for single equation dynamic forecasts
*******************************************************************************
Based on 16 observations from 2000Q1 to 2003Q4
Mean Prediction Errors -.69473 Mean Sum Abs Pred Errors .69473
Sum Squares Pred Errors .62009 Root Mean Sumsq Pred Errors .78746

*******************************************************************************
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Figure 4: Plot of actual and single equation dynamic forecast(s) 

 Plot of Actual and Single Equation
Dynamic Forecast(s)
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It can be seen from the summary statistics that the ARCH model is 

definitely more accurate in forecasting inflation. Whilst both models tend to 
overpredict inflation, every one of the four summary statistics is in displays smaller 
prediction error with the ARCH model. 

 
 

Conclusion 
 
This paper has shown that past values of inflation have a considerable 

capacity to explain its current value. This paper also outlines the procedure involved 
in using arch estimation, and shows that it improves the forecasting ability of the 
model. It has also been seen that seasonal dummies are appropriate for modelling 
inflation and can be combined to good effect with ARCH. It might have been 
interesting to try including seasonal dummies in the conditional variance equation to 
allow for seasonal patterns in volatility. Another interesting expansion of the model 
would be to use the conditional variances of inflation computed here in a 
macroeconomic growth model. This would allow investigation of the impact of 
inflation uncertainty on growth. 
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