
Non-cooperative Support for the Asymmetric Nash

Bargaining Solution

Volker Britz∗ P. Jean-Jacques Herings∗,a Arkadi Predtetchinski∗

January 11, 2010

a Corresponding author: Tel. +31 (0)43 38-83636, Fax +31 (0)43 38-84878.
∗ Department of General Economics, Maastricht University, P.O.Box 616, 6200 MD Maas-

tricht, The Netherlands. E–mail: v.britz@maastrichtuniversity.nl, p.herings@maastrichtuniversity.nl,
a.predtetchinski@maastrichtuniversity.nl. The authors would like to thank the Netherlands Organization
for Scientific Research (NWO) for financial support.



Abstract

We study a model of non–cooperative multilateral unanimity bargaining on a full–

dimensional payoff set. The probability distribution with which the proposing player is

selected in each bargaining round follows an irreducible Markov process. If a proposal

is rejected, negotiations break down with an exogenous probability and the next round

starts with the complementary probability. As the risk of exogenous breakdown vanishes,

stationary subgame perfect equilibrium payoffs converge to the weighted Nash bargaining

solution with the stationary distribution of the Markov process as the weight vector.

Keywords: Nash bargaining solution, subgame perfect equilibrium, stationary strategies,

Markov process.
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1 Introduction

This paper contributes to the Nash program of supporting solution concepts from coop-

erative game theory by obtaining them as equilibrium outcomes of suitably constructed

non-cooperative games. More specifically, we will be concerned with the asymmetric Nash

bargaining solution. Consider a situation where two players receive a given pair of payoffs

if they disagree, but may obtain any element of a convex set of other (superior) payoff

pairs if they mutually agree on one such element. The Nash bargaining solution (NBS)

is that payoff pair which maximizes the product of players’ gains over their disagreement

payoff. Nash [20] showed that this is the unique bargaining solution satisfying the axioms

of scale invariance, symmetry, efficiency, and independence of irrelevant alternatives. One

can generalize the NBS by assigning different weights to the players. The asymmetric

Nash bargaining solution (ANBS) is that payoff pair which maximizes a weighted product

of players’ gains over their disagreement payoff, see Kalai [12].

The ANBS is used to gain insights on a wide variety of problems in economics. For

instance, Bester [2] compares the effects of different pricing mechanisms on price and

quality of a product. In particular, posted pricing is compared to bargaining between

a buyer and a seller. In the latter case, the ANBS is taken to be the outcome of the

bargaining interaction.

Another common application is wage bargaining between a firm and a union: Firm

owners and workers can agree to produce and hence create a surplus. A part of the surplus

goes to the workers as their wage, and the rest goes to the shareholders. If, however, the

two sides cannot find an agreement, the workers may strike or the firm may shut down

so that no surplus is generated. In a seminal paper on wage bargaining, Grout [7] studies

the effect of different legal frameworks on wage bargaining. Throughout the analysis, it is

assumed that bargaining between the firm and the union leads to the outcome predicted

by the ANBS.

The prominent use of the ANBS in applications highlights the need for strong non-

cooperative underpinnings of this concept. In the case of the ANBS, it is imperative to

examine the non-cooperative or strategic sources of players’ “bargaining power” which is

borne out in the weight vector of the ANBS. Nash [21] presents a non-cooperative demand

game with two players who are uncertain about which payoff pairs are feasible. In the limit

as the uncertainty vanishes, equilibrium payoffs converge to those predicted by the NBS.

Carlsson [4] takes a similar approach, but with a different source of uncertainty: While the

set of feasible payoffs is known to both players, their actions are subject to noise. If players

make demands which do not exhaust the available surplus, the remainder is distributed

according to an exogenously fixed rule. In the limit as the noise vanishes, there is a unique

efficient equilibrium. The payoff pair is a particular ANBS; the bargaining weights are
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determined by the exogenous division rule.

In a seminal paper, Rubinstein [22] provides a non-cooperative game in which two

players negotiate on the division of a pie. The players take turns acting as the proposer. The

division of the pie in the unique subgame perfect equilibrium depends upon how strongly

players prefer current over future payoffs. In the limit as players become perfectly patient,

the equilibrium division converges to the NBS. In their discussion of cooperative and non-

cooperative approaches to bargaining, Binmore, Rubinstein and Wolinsky [3] obtain the

NBS in the limit if either players’ impatience or the risk of an exogenous breakdown of the

negotiations is vanishing.

Although the relationship between cooperative and non-cooperative approaches to bar-

gaining are well understood for the case of two players, such is far less the case when more

than two players are involved in the negotiation process. While it is straightforward to gen-

eralize the ANBS to n players, the extension of its non-cooperative justification has turned

out to be a much more difficult problem. Krishna and Serrano [14] make use of Lensberg’s

[17] stability (consistency) property. They design a non-cooperative bargaining protocol

in which players can exit after partial agreements. This game has a unique subgame per-

fect equilibrium and the payoffs implied by that equilibrium converge to the NBS as the

discount factor goes to one. Chae and Yang [5] obtain uniqueness of perfect equilibrium

and convergence to the NBS in a game where a proposer negotiates with one responder at

a time. In both papers, the results come at the cost of allowing partial agreements, rather

than requiring unanimous consent to a comprehensive proposal.

For the case with unanimous consent, an early support result for the NBS in the n

player case is implied by the analysis of Hart and Mas-Colell [9]. More recently, support

results for the ANBS have been given by Miyakawa [19] and Laruelle and Valenciano [16].

All these papers consider a bargaining game where the proposer in each period is drawn

from an invariant probability distribution. The stationary equilibrium payoffs turn out to

converge to the ANBS with that probability distribution as the weight vector. Our analysis

covers this result as a special case. Another special case is a fixed order of proposers, as

analyzed by Kultti and Vartiainen [15], who also show that differentiability of the payoff

set’s Pareto frontier is essential for the convergence result if there are at least three players.

Other strands of the bargaining literature consider much more general bargaining proto-

cols. For instance, in their analysis of uniqueness and efficiency of equilibria in bargaining

games, Merlo and Wilson [18] assume that both the size of the cake to be divided and

the order in which players propose and respond follow a Markov process. Kalandrakis [13]

examines no-delay equilibria in stationary strategies under a Markov selection protocol,

where agreement does not necessarily require unanimous consent of all players, but only

of those within a winning coalition. The set of such equilibria is characterized and shown
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to be non-empty. Herings and Predtetchinski [10] study a game with Markov recognition

probabilities, where the set of alternatives is one-dimensional. While studying delay or

inefficiencies in bargaining games, other authors have used proposer protocols following

stochastic processes, see for instance Cho and Duggan [6] and Hyndman and Ray [11] .

In these papers, the stochastic process is not even required to have the Markov property,

so the choice of the proposer may depend on aspects of history other than the identity

of the previous proposer. Since more general selection protocols are used in much of the

bargaining literature, we find it important to extend this approach to the support results

for the ANBS.

In this paper we take a general approach towards multilateral bargaining. We aim at

results for the case with n players, a general set of feasible payoffs, and a general bargaining

protocol. An informal description of the game we consider in this paper is as follows.

In the first period of an infinitely repeated bargaining game, the identity of the proposer

is completely arbitrary. In each subsequent period, one out of the n players is recognized

as the proposer according to an irreducible Markov process. Upon recognition, the pro-

poser offers a particular element of a convex and comprehensive set of feasible payoffs.

If all players accept the offer, it is implemented. If a player rejects the offer, with some

exogenously given and constant breakdown probability the game ends, whereas with the

complementary probability the next period starts.

We show that subgame perfect equilibria in stationary strategies exist and we charac-

terize the set of such equilibria. We then study the limit of an arbitrary sequence of such

equilibria corresponding to a sequence of vanishing breakdown probabilities. We show that

in the limit all players make the same proposal. Our main result is that in the limit this

common proposal coincides with the ANBS with the stationary distribution of the Markov

proposer selection process as the weight vector. Hence, equilibrium payoffs depend only

on the set of feasible payoffs and the stationary distribution associated with the matrix of

transition probabilities.

The proof of our result goes well beyond mere technical generalizations of existing proof

strategies. Since the reservation payoff of a responding player depends on the identity

of the current proposer, reservation payoffs cannot be expressed by a single vector, but

correspond to a matrix. For any value of the exogenous breakdown probability, we consider

the vectors corresponding to the difference between the equilibrium proposals of a pair of

players. We show that in the limit as the breakdown probability vanishes, these vectors

span an (n−1)-dimensional supporting hyperplane to the set of feasible payoffs at the point

corresponding to the common limit proposal of the players. Finally, we demonstrate that

the unique normal vector to this supporting hyperplane is proportional to the gradient of

the asymmetric Nash product with weights equal to the stationary distribution associated
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with the matrix of transition probabilities.

Our analysis includes two very frequently encountered proposer protocols as special

cases. First, consider the protocol where the proposer in each round is drawn from the

same probability distribution. This corresponds to a Markov chain where all the rows of the

transition matrix are the same. Our result implies that stationary equilibrium payoffs con-

verge to the ANBS with the time-invariant probability distribution as bargaining weights.

Consequently, our findings cover the support results of Hart and Mas-Colell [9], Miyakawa

[19], and Laruelle and Valenciano [16]. Second, suppose that players make proposals in

some fixed order, which is a straight-forward n-player extension of the alternating-offer

protocol in the classical paper by Rubinstein [22]. The fixed order of proposers induces a

stationary distribution of the Markov chain with equal weights for all players. The limit

equilibrium then corresponds to the NBS, the result shown by Kultti and Vartiainen [15].

In the current paper, we reveal how the aforementioned results are instances of a much

more generally valid principle.

We assume that the set of feasible payoffs is comprehensive from below and that all

weakly Pareto-efficient payoffs are also strongly Pareto-efficient, implying that the relevant

bargaining space is (n−1)-dimensional. Herings and Predtetchinski [10] consider the same

proposer selection protocol as in this paper, but study the case of a 1-dimensional set of

alternatives where players have utility functions that are linear in the distance to their

most preferred alternative. A unique prediction for the equilibrium payoffs is obtained in

the limit as the discount factor goes to one. The equilibrium alternative of the bargaining

game is contrasted with the prediction of both the median voter theorem and the ANBS

and it is argued that there are no general relationships. Full dimensionality of the space

of payoffs is therefore crucial to obtain convergence to ANBS.

The paper is organized as follows. Section 2 gives the formal description of the bargain-

ing game and the definition of the equilibrium concept. In Section 3, we give necessary and

sufficient conditions for a profile of stationary strategies to be an equilibrium in accordance

with that concept. We also show that such an equilibrium exists. In Section 4, the main

result is established: our non-cooperative support for the ANBS. Section 5 concludes.

2 The Bargaining Game

We consider the bargaining game Γ(N,M, V ). The set of players is denoted by N , and its

members are indexed from 1 until n. The game is played for potentially infinitely many

periods t = 0, 1, 2, . . .. In each period, one player acts as the proposer. In period t = 0, the

proposer is determined in an arbitrary way. In all later periods, the proposer is chosen by a

Markov chain. The probability distribution on the players in period t > 0 depends on the
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identity of the proposer in period t− 1. The entry mij of the matrix M is the probability

that player j will propose in period t given that player i has proposed in period t− 1. All

entries of M are nonnegative and for each i ∈ N , it is true that
∑n

j=1mij = 1. The set

V corresponds to all feasible payoffs. We denote V ∩ Rn
+ by V+. Our assumptions are as

follows.

(A1) The set V is closed, convex, and comprehensive from below. The origin lies in the

interior of V . The set V+ is bounded and all weakly Pareto-efficient points in V+ are

also strongly Pareto–efficient.

(A2) The matrix M is irreducible.

We denote the interior and boundary of a set X by int(X) and ∂X respectively. A vector

η with ‖η‖ = 1 is said to be normal to the convex set V at a point v̄ ∈ V if (v− v̄)>η ≤ 0

for every v ∈ V. The set of all vectors η normal to V at v̄ is called the normal to V at v̄.

(A3) There is a unique vector in the normal to V at every v ∈ ∂V ∩ Rn
+.

The assumption that all weakly Pareto-efficient points in V+ are also strongly Pareto–

efficient is essential to our results. As we show later in Section 3, this assumption implies

that a proposal of a player i gives all other players their respective reservation payoffs.

Thus a proposer always extracts the full surplus from all other players. Our assumptions

with respect to V are similar to those in Merlo and Wilson [18] and Miyakawa [19].

The game proceeds as follows. In any period t, first the proposer is chosen in the

aforementioned way. Next, the proposer offers a vector v ∈ V . Then, all players (including

the proposer) decide sequentially whether to accept or reject the offer v, where for the sake

of simplicity we assume that player i responds before player i + 1. We define the set S(i)

consisting of player i and all its successors by S(i) = {j ∈ N | j ≥ i}. If all players have

accepted the vector v in period t, the game ends and each player i receives a payoff of vi.

As soon as one player rejects v, period t+ 1 starts with probability δ, and the game ends

with probability 1− δ. In the latter case, as well as in the case of perpetual disagreement,

all players receive zero payoff. We assume that players maximize expected payoffs.

We denote by Hp
i the set of histories after which player i has to make a proposal and

by Hr
i the set of histories after which player i has to respond to a proposal. Then, a

strategy for player i is a map si : Hp
i ∪ Hr

i → V ∪ {Yes,No}, where si(H
p
i ) ⊂ V and

si(H
r
i ) ⊂ {Yes,No}.

Player i’s strategy is stationary if the same proposal is made at all histories Hp
i and if

the action taken at any history Hr
i depends only on the current proposal and the current

proposer.1

1This notion of stationarity is weaker than the notion of subgame consistency due to Harsanyi and
Selten [8], which implies that a player chooses the same action at any two nodes for which the continuation
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A Nash equilibrium is a profile of strategies from which no player has an incentive to

unilaterally deviate. A subgame perfect Nash equilibrium (SPE) is a profile of strategies

such that its restriction to any subgame is a Nash equilibrium of that subgame.

A stationary subgame perfect Nash equilibrium (SSPE) is a profile of stationary strate-

gies which is an SPE.

3 Analysis of Stationary Equilibrium

In this section, we characterize the set of subgame perfect equilibria in stationary strategies.

Theorem 3.11 gives the necessary and sufficient conditions for a strategy profile to be an

SSPE and Theorem 3.12 asserts that an SSPE exists.

The analysis in this section resembles Kalandrakis [13], but some important differences

should be noted: We conclude rather than assume that agreement is immediate in SSPE

and we do not impose assumptions on the behavior of players who are indifferent between

acceptance and rejection of some proposal. Furthermore, Banks and Duggan [1] have given

an equilibrium analysis similar to the one developed in this section, but not covering the

general proposer protocol under consideration here.

Consider a profile of stationary strategies. It can be described by an n× n -matrix Θ,

where the entry θij is the payoff proposed to player j by player i, and a collection A of n2

acceptance sets, where the acceptance set Aij is the set of vectors in V which player j will

accept when proposed by player i. The set of vectors in V accepted by player j and his

successors, if proposed by i, is AiS(j) = ∩k∈S(j)A
i
k. We refer to Ai = AiS(1) =

⋂
j∈N A

i
j as the

social acceptance set for proposer i.

Suppose that in period t, the proposal of player i is rejected. With probability 1 − δ
the game ends and all players receive zero payoff, and with probability δ period t + 1 is

reached and play proceeds according to the profile (Θ,A) of stationary strategies. The

expected payoff to player j after rejection is rij(Θ,A). Omitting the argument (Θ,A) from

the notation wherever possible, we refer to rij as the reservation payoff of player j when i

proposes.

Proposition 3.1 The reservation payoff ri belongs to int(V ).

Proof: Conditional on the next period being reached, the payoffs are determined by a

probability distribution on V (notice that also 0 ∈ V ), so expected payoffs belong to V

since V is convex. Since with probability 1 − δ the next period is not reached, these

game is the same. For instance, suppose that rows i and j of M are identical. Then, the continuation
games after rejection of player i’s proposal and that after rejection of player j’s proposal are identical.
Yet, our definition allows Ai

k to be different from Aj
k for one or more players k ∈ N .
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expected payoffs equal δ−1ri, so δ−1ri ∈ V. Since 0 ∈ int(V ), the convex combination

(1− δ)0 + δδ−1ri = ri belongs to int(V ). 2

One implication of Proposition 3.1 is that a proposer always has the option to make a

proposal that strictly exceeds the reservation payoff of every player.

Proposition 3.2 In SSPE, for j ∈ N, if v ∈ AiS(j), then vk ≥ rik for all k ∈ S(j).

Proof: Suppose that (Θ,A) is a profile of stationary strategies such that v ∈ AiS(j) but

vk < rik for some player k ∈ S(j). Consider a history in Hr
k, where player k responds to

the proposal v made by player i. At that history player k could deviate from (Θ,A) by

rejecting v. In that case, an expected payoff of rik would result. Hence, this deviation is

profitable and (Θ,A) cannot be an SSPE. 2

Proposition 3.2 implies that for a vector of payoffs v to belong to the social acceptance

set, it should satisfy vj ≥ rij for all j ∈ N.

Proposition 3.3 In SSPE (a) if v ∈ V is such that vn > rin, then v ∈ Ain, and (b) for

each j = 1, . . . , n− 1 if v ∈ AiS(j+1) is such that vj > rij, then v ∈ Aij.

Proof: To prove part (a) of the proposition suppose that v ∈ V satisfies vn > rin. Consider

a history where player n has to respond to the proposal v of player i. If n accepts, the

proposal will be implemented, so a payoff of vn will result, which is strictly greater than

the payoff rin which would result from a rejection. Therefore, SSPE requires that v ∈ Ain.

To prove part (b) take a j = 1, . . . , n− 1 and a v ∈ AiS(j+1) such that vj > rij. Consider

a history where player j responds to the proposal v of player i. If player j accepts, the

proposal will be implemented since all the players succeeding j accept. Since rejection

results in a payoff of rij, SSPE requires that v ∈ Aij. 2

Proposition 3.3 established a kind of converse of Proposition 3.2. One implication of

Proposition 3.3 is that a vector v ∈ V that satisfies vj > rij for all j ∈ N belongs to the

social acceptance set Ai.

Proposition 3.4 In SSPE, each player’s proposal θi lies in the social acceptance set Ai

for proposer i.

Proof: Suppose by way of contradiction that under some SSPE there is a player i ∈ N such

that θi /∈ Ai. Consider the subgame starting at a history where player i is the proposer.

Since θi is rejected, ri is the vector of expected payoffs by definition. By Proposition 3.1,

ri ∈ int(V ). Consequently, there exists v ∈ V such that vj > rij for all j ∈ N . By the

previous proposition, v ∈ Ai. Hence, it would be a profitable deviation for player i to

propose v instead of θi. 2
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Proposition 3.5 In SSPE, θij ≥ 0 and rij ≥ 0 for all (i, j) ∈ N ×N .

Proof: Suppose by way of contradiction that (Θ,A) is an SSPE and that θij < 0 for some

(i, j) ∈ N × N . Consider a history where player j has to respond to the proposal θi. By

Proposition 3.4, θi ∈ Ai, so player j will receive a strictly negative payoff if play proceeds

according to (Θ,A). But then, it would be a profitable deviation for player j to reject the

proposal. Consequently, it holds that θij ≥ 0 for all (i, j) ∈ N × N. It then follows that

rij ≥ 0 for all (i, j) ∈ N ×N. 2

The next proposition shows that an equilibrium proposal of any player gives all other

players their respective reservation payoffs. Thus a proposer always extracts the entire

surplus from the other players.

Proposition 3.6 In SSPE, θij = rij for all (i, j) ∈ N ×N such that i 6= j.

Proof: Since θi ∈ Ai by Proposition 3.4, Proposition 3.2 implies that θij ≥ rij for all j ∈ N .

Suppose θik > rik for some k ∈ N such that k 6= i. Define the vector v as follows,

vj =

θii if j = i

rij if j 6= i.

The vector v is clearly non–negative and it is in V , because v ≤ θi and V is comprehensive.

Furthermore, vk = rik < θik, so the vector v is dominated by θi and is therefore not strongly

Pareto–efficient. Since we assume that all weakly Pareto–efficient vectors of V+ are also

strongly Pareto–efficient, the vector v is not weakly Pareto–efficient. Thus, there exists a

vector v′ such that v′j > vj for all j ∈ N .

We show now that v′ ∈ Ai. Indeed, v′j > vj = rij for all j 6= i. And for player i we

have the inequality v′i > vi = θii ≥ rii. Thus we conclude that v′j > rij for all j ∈ N .

Proposition 3.3 now implies that v′ ∈ Ai, as desired.

But then player i has a profitable deviation at any history where he is entitled to make

a proposal, namely propose the vector v′ rather than θi. Indeed, the vector v′ is accepted

and results in a payoff of v′i > θii to player i. 2

Proposition 3.7 claims that all players make a proposal belonging to the boundary of

V.

Proposition 3.7 In SSPE, θi ∈ ∂V for each i ∈ N .

Proof: Suppose by way of contradiction that there is a player i ∈ N such that θi ∈ int(V ).

Equivalently, there exists v ∈ V such that vj > θij for all j ∈ N . By the immediate
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agreement property, θi ∈ Ai. This implies that v ∈ Ai as well. But then it would be a

profitable deviation for player i to propose v rather than θi. 2

The previous propositions are collected in the following theorem.

Theorem 3.8 Suppose (Θ,A) is an SSPE profile inducing reservation payoffs ri. For each

i ∈ N

θi ∈ Ai ∩ ∂V ∩ Rn
+, (3.1)

ri = δ
∑n

k=1mikθ
k, (3.2)

θij = rij, j ∈ N \ {i}, (3.3)

AiS(j) ⊂ ∩k∈{j,...,n}{v ∈ V |vk ≥ rik}, j ∈ N, (3.4)

Ain ⊃ {v ∈ V |vn > rin}, (3.5)

Aij ⊃ {v ∈ AiS(j+1)|vj > rij}, j ∈ {1, . . . , n− 1}. (3.6)

In what follows, we establish the converse; the conditions of Theorem 3.8 characterize

the set of SSPE. To do so, we will first state the well-known one-shot deviation principle.

Proposition 3.9 Let (Θ,A) be a stationary strategy profile satisfying (3.1)–(3.6). If there

is a subgame such that some player has a profitable deviation, then there is a subgame

where he has a profitable one-shot deviation.

Here, a one-shot deviation in a subgame is a single deviation by the player at the root

of the subgame. The proof of this principle is standard in the literature and is based on the

optimality principle from dynamic programming. We will show next that no player has a

profitable one–shot deviation from a profile of strategies satisfying conditions (3.1)–(3.6).

Proposition 3.10 Let (Θ,A) be a stationary strategy profile satisfying (3.1)–(3.6). There

is no subgame where a player has a profitable one-shot deviation.

Proof: Consider the subgame at a history h ∈ Hp
i . Suppose player i has a one-shot

deviation involving a proposal vi different from θi. If vi does not belong to Ai, it leads to

a payoff rii for player i. Since θij = rij for all j 6= i and ri ∈ int(V ), the Pareto-efficiency of

θi implies θii > rii, so the deviation is not profitable. If vi belongs to Ai, then, for j 6= i,

vij ≥ rij = θij. Now vii ≤ θii, since otherwise the Pareto-efficiency of θi would be violated.

The deviation is not profitable.

Consider a subgame at a history h ∈ Hr
j where player j has to respond to a proposal

v made by player i. If j ∈ {1, . . . , n − 1} and v /∈ AiS(j+1), then either action by player j

leads to a payoff of rij and hence the deviation is not profitable. Suppose now that either
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j = n or j ∈ {1, . . . , n− 1} and v ∈ AiS(j+1). If v ∈ Aij then the original strategy leads to a

payoff of vj while the deviation yields a payoff of rij. Since vj ≥ rij by condition (3.4), the

deviation is not profitable. If v /∈ Aij then the original strategy leads to a payoff of rij while

the deviation yields a payoff of vj. Since vj ≤ rij by conditions (3.5)–(3.6), the deviation is

not profitable. 2

The previous two propositions imply that the strategies conforming to the conditions

of Theorem 3.8 are subgame perfect. Since they are also stationary, we have the following.

Theorem 3.11 The strategy profile (Θ,A) fulfills conditions (3.1)–(3.6) if and only if it

is an SSPE.

If a matrix Θ of proposals is part of an SSPE, then it is part of many SSPE’s. This

inessential multiplicity has two sources. First, if a responding player is proposed exactly

the reservation payoff, then our characterization restricts behavior only if the proposal on

the table is the equilibrium proposal. This is reflected by the fact that each point on the

boundary of the social acceptance set (except the relevant equilibrium proposal) may or

may not be an element of that set in SSPE. Second, if a proposal lies outside a social

acceptance set, it is indeterminate which player will reject the proposal. Consider for

example the case where N = {1, 2, 3, 4} and r1 = (1, 1, 1, 1). Now suppose that player 1

has proposed v = (2, 2, 0, 0) in some subgame. Since v3 < r1
3 and v4 < r1

4, Proposition 3.2

implies that v /∈ A1, and by Proposition 3.4 v 6= θ1. It is also true that v /∈ A1
4: If the

node where player 4 has to respond is reached, that player effectively chooses between

a payoff of 1 and a payoff of 0, so SSPE requires rejection of the proposal. However,

the SSPE characterization leaves indeterminate whether players 1, 2, and 3 will accept

or reject v. Consequently, there is an SSPE for any configuration of responses by these

players. In particular, player 3 may accept v in SSPE although v3 < r1
3, and player 2

may reject v although v2 > r1
2. This reasoning even extends to player 1: In SSPE, it is

possible that v /∈ A1
1 although v1 > r1

1 and player 1 is the proposer. However, this does not

mean that player 1 may reject his own proposal on the equilibrium path, since the SSPE

characterization requires the specific proposal θ1 to be made and immediately accepted by

all players.

Theorem 3.12 An SSPE exists.

For a proof of SSPE existence, we refer to Kalandrakis [13].
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4 The Limit Equilibrium

Our proofs so far did not rely on Assumptions A2 and A3. They will be needed for the

results of this section. Since the matrix M is irreducible, it has a unique stationary distri-

bution denoted by µ. Recall that the stationary distribution µ is a probability distribution

on the set of players N satisfying the equation µM = µ. Furthermore, irreducibility of

M implies that all states occur with positive probability under the stationary distribution,

that is µi > 0 for each i ∈ N . If the matrix M was reducible, the state space of M could be

partitioned into several communicating classes. In this case, one obtains results analogous

to those in the sequel within each communicating class.

Theorem 4.2 below is the main result of the paper. As the continuation probability goes

to one, along any sequence of stationary subgame perfect equilibria of Γ, the equilibrium

proposal of all players converges to the same limit. This common limit is the asymmetric

Nash bargaining solution weighted by the stationary distribution µ, denoted µ-ANBS.

Definition 4.1 The asymmetric Nash product with weights µ is the function ρ : V+ → R
defined by

ρ(v) =
∏
i∈N

(vi)
µi .

The µ–ANBS is the unique maximizer of the function ρ on the set V+.

Theorem 4.2 Let {δh}h∈N be a sequence of continuation probabilities in [0, 1) converging

to 1. For each h, let Θ(δh) be a matrix of proposals in some SSPE of the game Γ with

continuation probability δh. Then the limits limh→∞ θ
i(δh) exist for each i ∈ N . All limits

are equal to the µ–ANBS.

Let δh and Θ(δh) be as in Theorem 4.2. The sequence {Θ(δh)} has a convergent subse-

quence, as it lies in the compact set V n
+ , the Cartesian product of n copies of V+. For the

remainder of this section, we will fix any such convergent subsequence and denote its limit

by Θ̄. Since the convergent subsequence considered is arbitrary, to prove Theorem 4.2 it

is sufficient to show that each column of the matrix Θ̄ is the µ–ANBS.

We now give a brief overview of the argument. First we show that along the sequence

{Θ(δh)} of equilibria the proposals of all players converge to a common limit, say the point

θ̄ ∈ V . We then compute the tangent space to the set ∂V at the point θ̄ by considering

the pairwise differences of the equilibrium proposals of players i and n, and show they

converge to zero at the same speed as 1− δh. In fact, we are able to compute the limits of

the vectors (θi(δh)− θn(δh))/(1− δh) explicitly, which are then shown to span the tangent

space to the set ∂V at the point θ̄. Using this result we show next that the tangent space

11



at θ̄ is orthogonal to the gradient of the asymmetric Nash product with weights µ, thereby

showing that θ̄ is the µ–ANBS.

Proposition 4.3 All columns of Θ̄ are identical.

Proof: For any i 6= j, it follows from the SSPE characterization that

θ̄ij =
n∑
k=1

mikθ̄
k
j .

Suppose that, contrary to the proposition, not all limit proposals θ̄1, . . . , θ̄n are the

same. Let j ∈ N be such that in the limit not all players propose the same to player j,

and choose θ̄�j to be either mini∈N{θ̄ij} or maxi∈N{θ̄ij}, whichever is not equal to θ̄jj . Define

N� = {i ∈ N |θ̄ij = θ̄�j}. For any i ∈ N�, we have

θ̄�j = θ̄�j
∑
k∈N�

mik +
∑

k∈N\N�

mikθ̄
k
j ,

which is equivalent to

θ̄�j
∑

k∈N\N�

mik =
∑

k∈N\N�

mikθ̄
k
j .

Suppose first that for some i ∈ N�,∑
k∈N\N�

mik > 0.

Then

θ̄�j =

∑
k∈N\N� mikθ̄

k
j∑

k∈N\N� mik

,

which contradicts the fact that either θ̄�j < θ̄kj for all k ∈ N \ N� or θ̄�j > θ̄kj for all

k ∈ N \N�. Therefore, mik = 0 for all (i, k) ∈ N� × (N\N�) and thus N� is an absorbing

set. Since N� 6= N , this contradicts the irreducibility assumption on M . 2

We denote a column of Θ̄ by θ̄. For i ∈ N \ {n}, we define

di(δh) =
1

1− δh
(θi(δh)− θn(δh)).

Let D(δh) be the n× (n− 1)–matrix with columns d1(δh), . . . , d
n−1(δh).

The rest of the proof is organized as follows. In Proposition 4.5 we compute the limits

of di(δh) as h goes to infinity. Proposition 4.6 establishes that the limit of {di(δh)} belongs

to the tangent space to ∂V at θ̄. We then proceed to show in Proposition 4.8 that the

12



limits of d1(δh), . . . , d
n−1(δh) are linearly independent and thus span the tangent space to

∂V at θ̄. And finally, Proposition 4.9 establishes that the gradient of the Nash product

with weights µ at the point θ̄ is orthogonal to the tangent space of V, thereby showing that

θ̄ is the µ–ANBS.

For a matrix A, we denote by A−i and A−i the matrix A without its ith row and column,

respectively. We write 1 for a column vector of ones and I for the identity matrix.

For j ∈ N, we define the matrix L(j) by

L(j) = [M> − I]−j−n.

Thus L(j) is the (n− 1)× (n− 1)–matrix obtained from M>− I by deleting column j and

row n. Proposition 4.4 is an auxiliary result used in the proof of Proposition 4.5.

Proposition 4.4 The matrix L(j) is invertible for all j ∈ N.

Proof: Suppose L(j) is singular. Let a be a non–zero vector such that [M> − I]−j−na = 0.

Since the elements in any column of the matrix M> − I add up to zero, we also have the

equation (M>− I)−jn a = 0, so [M>− I]−ja = 0. By using [M>− I]−j = (M>− I)I−j and

defining b = I−ja, we see that (M> − I)b = 0. Thus the vector b is an eigenvector of M>

associated with eigenvalue 1. By the Perron–Frobenius theorem, any non-zero eigenvector

of M> associated with eigenvalue 1 is a strictly positive vector. However, since bj = 0, we

have obtained a contradiction. Consequently, the matrix L(j) is invertible. 2

Proposition 4.5 The sequence {D(δh)} of matrices converges to the matrix D̄ with rows

given by d̄j = θ̄j1
>L−1(j) for j ∈ N .

Proof: We fix h and denote δh by δ, θi(δh) by θi, and di(θh) by di.

For each j ∈ N and i ∈ N \ {j, n},

dij(1− δ) = θij − θnj = δ

n∑
k=1

mikθ
k
j − θnj

= δ

n∑
k=1

mik(θ
k
j − θnj ) + δθnj − θnj ,

where we use conditions (3.1) and (3.5) for the second equality, so

dij = δ
n−1∑
k=1

mikd
k
j − θnj .

We have found that

θnj = δ
∑

k/∈{i,n}

mikd
k
j + (δmii − 1)dij, j ∈ N, i ∈ N \ {j, n}. (4.1)

13



Similarly, for j 6= n,

djj(1− δ) = θjj − δ
n∑
k=1

mnkθ
k
j

= θjj − δ
n∑
k=1

mnk(θ
k
j − θnj )− δθnj

= θjj − θnj − δ
n∑
k=1

mnk(θ
k
j − θnj ) + (1− δ)θnj ,

where we use conditions (3.1) and (3.5) for the first equality, so

djj = djj − δ
n−1∑
k=1

mnkd
k
j + θnj .

We have found that

θnj = δ

n−1∑
k=1

mnkd
k
j , j ∈ N \ {n}. (4.2)

We write (4.1)–(4.2) in vector–matrix notation as

θnj 1
> = dj(δM

> − I)−j−n, j ∈ N.

The matrix (M>− I)−j−n is invertible by Proposition 4.4, and so is the matrix (δM>− I)−j−n
for δ close enough to one. Thus, for every j ∈ N, we can solve the above system for dj as

dj = θnj 1
>[(δM> − I)−j−n]−1.

As δh goes to one, the sequence θnj (δh) converges to θ̄j by Proposition 4.3. Thus the

sequence dj(δh) converges to θ̄j1
>L−1(j), as desired. 2

Proposition 4.5 expresses each row j of the matrix D̄ as the sum of the rows of the matrix

L−1(j) multiplied by the scalar θ̄j.

We show now that each column of the matrix D̄ is orthogonal to the normal vector of

V at the point θ̄, which is unique by Assumption A3. This is equivalent to saying that

each column of the matrix D̄ belongs to the tangent space of ∂V at θ̄. We let span(D̄)

denote the column span of the matrix D̄.

Proposition 4.6 It holds that span(D̄) is orthogonal to the normal vector of V at θ̄.

Proof: Let ηi(δh) denote the normal vector of V at the point θi(δh). Since {θi(δh)} con-

verges to θ̄, the sequence {ηi(δh)} converges to η̄, the normal vector to the set V at the

point θ̄. By the definition of the normal vector,

ηn(δh)
>(θi(δh)− θn(δh)) ≤ 0 and ηi(δh)

>(θi(δh)− θn(δh)) ≥ 0.

14



Dividing by 1− δh and passing to the limit yields the inequalities η̄>d̄i ≤ 0 and η̄>d̄i ≥ 0,

therefore η̄>d̄i = 0, as desired. 2

Propositions 4.7 and 4.8 address the dimension of span(D̄). We show that the columns

of D̄ are linearly independent, thus establishing that span(D̄) equals the tangent space of

∂V at θ̄.

For j ∈ N, let Kj be the sum of the rows of the matrix L−1(j), thus

Kj = 1>L−1(j).

Define K as the n× (n− 1)–matrix with rows Kj. Proposition 4.7 expresses all rows of K

in terms of rows of L−1(n) and the stationary distribution µ induced by M.

Proposition 4.7 Any combination of n − 1 distinct rows of the matrix K is linearly in-

dependent. Furthermore,

Kj = 1>L−1(j) = 1>L−1(n)− 1

µj
(L−1(n))j, j ∈ N \ {n}.

Proof: We define x = [M> − I]n−n. Consider some j ∈ N \ {n}. It can be verified by a

direct computation that

L−1(j) =



(L−1(n))1 −
(L−1(n)x)1

(L−1(n)x)j
(L−1(n))j

...

(L−1(n))j−1 −
(L−1(n)x)j−1

(L−1(n)x)j
(L−1(n))j

(L−1(n))j+1 −
(L−1(n)x)j+1

(L−1(n)x)j
(L−1(n))j

...

(L−1(n))n−1 −
(L−1(n)x)n−1

(L−1(n)x)j
(L−1(n))j

1

(L−1(n)x)j
(L−1(n))j



.

The formula above is well-known in linear programming and is used to compute the sim-

plex tableau following from a change in basis variables. By definition of the stationary

distribution we have

L(n)µ>−n + xµn = 0.

We multiply this expression by L−1(n) and rearrange to obtain

L−1(n)x = − 1

µn
µ>−n.
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By substitution, we find that

L−1(j) =



(L−1(n))1 −
µ1

µj
(L−1(n))j

...

(L−1(n))j−1 −
µj−1

µj
(L−1(n))j

(L−1(n))j+1 −
µj+1

µj
(L−1(n))j

...

(L−1(n))n−1 −
µn−1

µj
(L−1(n))j

−µn
µj

(L−1(n))j



.

Summing up the rows of L−1(j) we get

1>L−1(j) =
∑

i∈N\{j,n}

(L−1(n))i +
µj − 1

µj
)(L−1(n))j = 1>L−1(n)− 1

µj
(L−1(n))j.

Therefore,

K−n = [11> − C]L−1(n),

where C is the (n− 1)–diagonal matrix with element 1/µi in column i.

The matrix [11> − C] is non–singular. Suppose not, then there is y 6= 0 such that

[11> − C]y = 0. It follows that 11>y = Cy = (y1/µ1, . . . , yn−1/µn−1)
>, from which it

follows in particular that 1>y 6= 0. By pre-multiplying the last equality with the row

vector (µ1, . . . , µn−1), we find that (1 − µn)1>y = 1>y, a contradiction since µn > 0.

Consequently, the matrix [11> − C] is non–singular.

It follows that K−n is non–singular. Since the labeling of players is arbitrary, we have

shown that any combination of n−1 distinct rows of the matrix K is linearly independent.

2

Proposition 4.8 It holds that θ̄i > 0 for all i ∈ N . The column span of the matrix D̄ has

dimension n− 1.

Proof: We know that θ̄i ≥ 0 for each i ∈ N . Partition N into the set N0 of players i such

that θ̄i = 0 and the set N+ of players i such that θ̄i > 0.

Suppose that the set N0 is non–empty, so that the set N+ consists of at most n − 1

elements. We show first that θ̄ ∈ span(D̄) by constructing a vector z ∈ Rn−1 such that

D̄z = θ̄. Since the rows Ki of the matrix K corresponding to the elements i of the set

N+ are linearly independent by Proposition 4.7, there exists a vector z ∈ Rn−1 such that
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Kiz = 1 for all i ∈ N+. Then d̄iz = θ̄iKiz = θ̄i for all i ∈ N+. Trivially, z also satisfies the

equations d̄iz = θ̄iKiz = 0 = θ̄i for each i ∈ N0.

Let η be the normal vector to V at the point θ̄. Since η is orthogonal to span(D̄)

by Proposition 4.6, we have η>θ̄ = 0. Since zero is in the interior of V by assumption,

the vector εη is in the set V for ε > 0 small enough. But then we have the inequality

η>(εη − θ̄) = ε(η>η) > 0, contradicting the definition of a normal vector. Consequently,

the set N0 is empty. We have shown the first part of the proposition.

To prove the second part of the proposition, notice that D̄ can be written as the product

TK, where T is a diagonal matrix with θ̄i in column i. Since θ̄i > 0 for each i ∈ N , the

matrix T has full rank n, and the matrix K has rank n − 1 by Proposition 4.7. This

establishes the second part of the proposition. 2

We now proof that the gradient of the logarithm of the asymmetric Nash product with

weights µ is orthogonal to the column span of the matrix D̄. We observe that for v � 0,

ln ρ(v) =
∑
i∈N

µi ln(vi).

Proposition 4.9 It holds that span(D̄) is orthogonal to the gradient of the function ln ρ

at the point θ̄.

Proof: The gradient of ln ρ at θ̄ is the vector g given by gj = µj/θ̄j, j ∈ N. We have the

following chain of equations∑
j∈N

gj d̄j =
∑
j∈N

µj1
>L−1(j)

=
∑

j∈N\{n}

µj[1
>L−1(n)− 1

µj
(L−1(n))j] + µn1

>L−1(n)

= 1>L−1(n)−
∑

j∈N\{n}

(L−1(n))j

= 1>L−1(n)− 1>L−1(n) = 0,

where the first equality uses the result of Proposition 4.5, and the second one Proposi-

tion 4.7. This establishes the proposition. 2

The proof of Theorem 4.2 is now immediate. The column span of the matrix D̄ is orthogonal

to the normal vector of V at θ̄ by Proposition 4.6, and at the same time it is orthogonal to

the gradient of ln ρ at θ̄ by Proposition 4.9. Since span(D̄) has dimension n−1 (Proposition

4.8), it follows at once that the gradient of the function ln ρ is proportional to the normal

vector to V at θ̄. Hence, the point θ̄ is the maximizer of the function ln ρ on the strictly

positive vectors in the set V, as well as the maximizer of the function ρ on the set V+.
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5 Conclusion

In this paper we have provided further non-cooperative support to the asymmetric Nash

bargaining solution. We demonstrate that existing results are instances of a much more

generally valid principle. We consider a bargaining process involving any number of players,

an arbitrary irreducible Markov process that determines the selection of the proposer, and

any set of feasible payoffs that is bounded, convex, and has a smooth boundary. As long

as no agreement is reached, negotiations break down with some fixed probability.

We fully characterize the set of subgame perfect equilibria in stationary strategies. We

show that at least one such equilibrium exists and argue that in general there are many

such equilibria. We continue by studying the limit of an arbitrary sequence of equilibria

when the probability of breakdown goes to zero. We establish that in the limit all players

make the same proposal. Moreover, this proposal is the same as the one corresponding

to the asymmetric Nash bargaining solution, where the weights in the Nash product are

equal to the stationary distribution of the Markov process that determines the selection of

the proposer.

One implication is that if players are selected as proposer in some fixed order, then

the symmetric Nash bargaining solution is achieved in the limit. This can be seen as a

generalization of alternating offer bargaining to more than two players. Another implication

is that if players are selected according to time-invariant probabilities, these probabilities

are equal to the weights in the Nash product. The symmetric Nash bargaining solution

would again result if the time-invariant probabilities are uniform.

It is noteworthy that the bargaining power of the players is only affected by the sta-

tionary distribution of the proposer selection process. The particular shape of the set of

feasible payoffs is irrelevant for the weights of the players in the Nash product, as are the

particular probabilities by which the proposer in the next period is chosen conditional on

the current proposer.
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