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Abstract

Volatility in financial markets is a matter of considerable concern to fi-

nancial institutions and their supervisors. Already it is clear that this volatility

has had an adverse effect on the real economy. Many measures of risk that

are used today do not take full account of the kind of extreme changes in

asset prices that have been observed. This paper finds that the Value at Risk

measure of risk can be improved by the use of an α-stable distribution in place

of more conventional measures. The paper describes the use of this measure

and implements it for six total returns equity portfolios. We find that α-stable

based measures are feasible and are better than conventional measures. They

are a useful tool for the risk manager and the financial regulator.
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1 Introduction

Today Value at Risk (VaR) is the most common measures of risk used in many

financial institutions. VaR at a p% level is estimated as the loss that might be

exceeded p% of the time. Like many other models in finance it is often based

on an assumption that losses follow a normal distribution. It is now well known

that extreme losses are greater than, and occur much more often than, a normal

distribution would predict. To allow for this, VaR measures are sometimes based

on a t-distribution or an ARCH/GARCH systems with innovations having a normal

or t-distribution. Several other distributions or mixtures of distributions have been

proposed but none have received universal acceptance and it is probable that none

ever will.

The α-stable distribution, which is examined here, may be thought of as a

generalisation of the normal distribution. A normal distribution of losses is often
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justified by an appeal the central limit theorem. Similar arguments can also be

used to justify the use of an α-stable distribution. The purpose of this exercise

is to calculate VaR at various levels assuming that losses follow either a static

α-Stable distribution or a TS-GARCH type distribution with α-stable innovations.

The resulting estimates are compared with estimates obtained from static normal

and t-distributions, and GARCH(1,1) systems with normal and t-innovations. The

portfolios examined are six total returns 1 equity indices (ISEQ, CAC40, DAX30,

FTSE100, S&P500, Dow Jones Composite (DJAC)). VaR is estimated at 10%,

5%, 1%, 0.5% and 0.1% levels.

Section 2 of the paper gives a brief outline of the development and definition

of VaR. Section 3 introduces the α-stable distribution and explains why it is a

good candidate for the distribution of losses. The main results of the analysis are

in section 4. All parameter estimates are maximum likelihood estimates. Techni-

cal details and results of the estimations along with descriptions of the data and

software used are in the appendices. The results may be summarised as follows.

The main finding is that the α-stable GARCH(1,1) model for losses provides

the best measure of VaR. It gives good estimates at all VaR levels for all the indices

considered. The theoretical justification for the good results is given in section 3.

I have shown that the estimates of VaR derived from an α-stable distribution are

feasible and are a useful addition to the toolbox of a risk manager or a financial

regulator.

The normal distribution performs very badly even at the conventional 5% and

1% levels. It tends to over estimate VaR at the higher probability levels and

under estimate at the lower. This is what one would expect given the exponential

decay in the tails of the normal distribution. A VaR at 1%, based on the normal

distribution underestimates risk. It is misleading to management to the extent that

they may agree to some investments that would not be accepted if a more accurate

assessment of risk was used.

The t-distribution appears to perform very well, particularly in the tails of the

distribution. Empirically it is marginally (but not statistically) better than the α-

stable. The simplicity of the t-distribution makes it an attractive alternative. While

1. In calculating these indices it is assumed that dividends are reinvested in the portfolio
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it appears to work well empirically there is no good economic reason for its good

performance. As is well known, empirical results with no theory usually lead to

problems.

The GARCH distributions with normal innovations performs somewhat better

than the static normal distribution. Curiously the GARCH distribution with t-

innovations does not perform as well as the static t-distribution but is better than

the GARCH with normal innovations.

The static α-stable distribution performance is about equivalent to the t-distribution

but is excellent at the conventional levels. Extreme VaR at levels less than 1% tends

to be conservative.

Section 5 summarises the analysis and sets out the conclusions that may be

drawn from the analysis.

2 Value at Risk (VaR)

The world wide equity crisis in 1987, the fall in Japanese equity market in 1990, the

Mexican peso crisis in 1994/95 and the severe losses suffered in various derivative

transactions in the 1990s were a strong incentive to both market participants and

regulators to measure and monitor market and other exposures. Jorian (2007)

(page 32) estimates losses in the 1990s publicly attributed to derivatives at over

$ 30 billion. Given the overall volume of derivative trading this is not an enormous

sum it is extremely problematic to the individual companies that incurred the losses.

Financial regulators would also fear that losses such as these might have knock on

effects that would effect the efficient functioning of markets. Jorian (2007) lists

five firms that each had losses of more than $ 1 billion attributed to derivative

trading.

• Orange County, California, December 1994, Reverse repos, loss $1810 billion

• Showa Shell Sekiyu, Japan, February 1993, Currency Forwards, loss $1580

billion

• Kashima Oil, Japan, April 1994, Currency Forwards, loss $1450 billion
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• Metallgesellschaft, January 1994, Germany, Oil Futures, loss $1340 billion

• Barings, U.K., February 1995, Stock Index futures, loss $1330 billion

One lesson to be learned from these and similar events was the need to introduce

better methods of risk assessment and monitoring. At that time often simple rules

based on guidelines like “high liquidity”, “low” interest rate risk, hedging, “highly”

correlated, limits on amount invested, sectors etc. were often used. Such rules

were often ambiguous or could easily be circumvented by “resourceful” traders.

Many losses of the type outlined above were due to inadequate and/or circum-

vented supervisory controls. In the the US the Sarbanes-Oxley Act of 2002 creates

a more rigourous legal environment for the board, the management committee,

internal and external auditors, and the chief risk officer. These regulations apply to

all companies with a quotation on a US exchange and thus apply to several large

Irish companies. Management and directors of such institution are now required to

have risk measurement, audit and control systems in place and to report regularly

on these. The financial regulatory authorities have now adopted the Basel II Cap-

ital Adequacy Directive which allow institutions to use, subject to approval, their

internal risk measurement systems to determine capital adequacy for regulatory

purposes.

Value-at-Risk (VaR) is a commonly used measure of the risk of an investment

or a portfolio. A p% VaR is the lower limit on the proportion of a portfolio can

be lost p% of the time. Thus a p% VaR is the (100 − p)% quantile of the loss

distribution This is illustrated in figure 1 where the value at the left boundary of

the shaded area represents the 5% VaR.

P rob[ loss ≥ Vp] = p (1)

Thus if the daily loss on a portfolio is normally distributed with an expected

value of 0.005% and a standard deviation of 0.010 one would expect to lose

• more than 0.0114% 5% of the time

5



−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
 (

x)

5% VaR

Figure 1: 5% Value at Risk

• more than 0.0183% 1% of the time

The daily VaR of the portfolio is then 0.0114% and 0.0183% at the 5% and 1%

levels respectively. Here I consider VaR corresponding to a one day holding period.

The period covered by the VaR calculated by a financial institution would depend on

the nature of its business. A pension fund would calculate VaR over a long holding

period whereas a bank would be interested in a shorter holding period (typically 10

days). We shall not consider here how the daily VaR might be aggregated to a

longer holding period

A properly implemented VaR includes all sources of risk and should encompass

market, operational, credit, liquidity and model risk. VaR may be calculated at

enterprize level, at various sector levels within the organisation and at individual

trader level - the VaR at lower levels being aggregated to estimate VaR at the

higher levels. Operational VaR levels may be set for individual traders. VaR limits

for individual traders should also facilitate control of operations as a dealer oper-
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ating outside his limits 2 will be detected if his dealings are properly recorded by

the system. It should be added that the risk management function in an organisa-

tion should not depend solely on a VaR system but should have a range of tools

available to them. If one looks at many of the derivative disasters a proper VaR

implementation might have saved a lot of embarrassment

Risk is a very complex subject which I am not going to examine in detail here.

In brief it is the uncertainty in forecasted future returns. As such, like utility, it

is an ordinal concept. Any one-one (strictly) monotonic transformation of a risk

measure is an equivalent risk measure. The statement that one investment is 10%

more risky than another simply does not make sense.

Artzner et al. (1999) set out a set of desirable properties that a measure of risk

should have. Let X and Y be two assets. A risk measure ρ() is coherent if it has

the following four properties

Subadditivity ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (diversification reduces risk)

Homogeneity For any number α > 0, ρ(αX) = αρ(X)

Monotonicity ρ(X) ≥ ρ(Y ) if X ≤ Y

Risk Free Condition ρ(X + k) = ρ(X)− k for any constant k

VaR satisfies three of these conditions but may fail on subadditivity. To cope

with this shortcoming alternative measures of risk have been proposed. Expected

Shortfall (ES) is one such measure. Expected Shortfall is defined as the expected

loss given that the VaR threshold has been exceeded. Daníelsson et al. (2005)

has shown that subadditivity holds for VaR in all the distributions considered here.

Subadditivity of VaR fails for assets which have super-fat tails (e.g. α-stable dis-

tributions where α ≤ 1, return/loss distributions which show very little variation

apart from occasional jumps (e.g. "fixed" exchange rates) and some transactions

involving derivatives). In all the cases considered here VaR is a monotonic trans-

formation of ES and thus an equivalent measure of risk. The difference is in the

2. A dealer making large profits but operating outside his limits should of course be subject to
the same disciplinary action as his colleague who loses money in such circumstances
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explanation given to each measure. In practice where there is doubt both measures

might be calculated.

The main advantage of VaR is that it is a simple idea and may be relatively

easy 3 to calculate and is easily explained to non-technical persons in management.

In 1994, at 4,15 pm each evening, J.P Morgan started to take a snapshot of their

global trading positions to estimate, for management, their Daily-Earnings-at-Risk

. This system was based on estimated correlation matrices, IGARCH systems

and innovations with a normal distribution. In 1996 they made the relevant data

and programmes (Riskmetrics) available to all other users. This move allowed

many smaller users to implement VaR systems without the required investment

in data and programmes. The current version of the Riskmetrics package allows

innovations to follow a t-distribution.

One problem with VaR is the apparent precision of the measurements which

may lead management to underestimate the true risk or to miss some aspect of

risk. Even in the simple cases considered here one can see that the estimates are

subject to considerable margins of error. Risk managers must be aware of the

limitations of VaR and avoid creating false impressions.

A second criticism of VaR is that it takes no account of the shape of the

distribution beyond the VaR point. Strictly speaking VaR estimates of two portfolios

may be comparable only if the distributions of losses arising from the two portfolios

are similar. A dealer may be able to increase returns by selling derivatives which

might hedge the purchaser against some extreme risk. If the probability of the

extreme event was small this would have very little effect of his calculated VaR.

He has however changed the distribution of his losses. This is a serious problem

with VaR systems and demonstrates the need to keep watch on the entire loss

distribution. Risk management is a dynamic process and not simply a black box.

Risk managers need to be extremely competent and be aware of the ability of traders

to adapt to various constrains imposed on them. The risk manager needs to oversee

the entire loss profile and not depend solely on an individual measure such as VaR.

The combined use of VaR and ES might prove useful in such circumstances.

3. For a large financial institution dealing with a large number of exotic option the calculation
of VaR is not easy but it is difficult to think of an simpler alternative
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Frain and Meegan (1996) contains an account of the concepts and analytics

of Value-at Risk. For more details see see also Dowd (1998, 2002), Jorian (2007)

and Crouhy et al. (2006).

3 The α-Stable Distribution

It is well known that the unconditional distribution of losses 4 (returns) on equities

and many other assets displays, relative to the normal distribution,

• fat tails,

• a high peak

• and may be skewed

The stylised facts regarding loss distributions are well set out in Chapter 4 of Taylor

(2005). The normal distribution does not accommodate these stylised facts and

many alternatives have been proposed. To date no distribution has been universally

accepted and probably none ever will. The use of the α-stable distribution was

first advocated in the 60’s by Mandelbrot (Mandelbrot (1962, 1964, 1967, 1997),

Mandelbrot and Hudson (2004)) and Fama (1964, 1965, 1976). Mandelbrot ex-

amined the variation of prices of cotton (1816-1940), wheat (1883-1936), railroad

stock (1857-1936) and interest and exchange rates (similar periods) and found a

larger number of extreme values than could be justified by the assumption of a nor-

mal distribution. Fama examined the distribution of daily returns for the 30 stock

in the Dow Jones Industrial Average in a period from about the end of 1957 to

September 26 1962. There was considerable interest in the α-stable distribution

throughout the 60’s and the early 70’s but interest then declined. This decline

4. Throughout this paper returns are defined as 100 times the log difference of the asset price
(including dividends). Thus if Pt−1 and Pt are the prices of the asset in periods t − 1 and t
respectively, and Dt the dividend paid in period t the return Rt on the asset in period t is given by

Rt = 100 log

(

Pt +Dt
Pt−1

)

≈ 100

(

Pt +Dt
Pt−1

− 1

)

.

The loss on asset is then simply the negative of the return.
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can be attributed to two causes. First the enormous success of the Merton-Black-

Scholes theories which form the basis of much of the theory on modern finance.

The implementation of much of their analyses are based on assumptions of normal-

ity in the distribution of returns. Secondly the mathematics and implementation of

routines involving α-stable distributions are not easy. For a more recent review of

the application of α-stable distributions in finance see Rachev and Mittnik (2000).

Frain (2006) examines the fit of the total returns equity indices, considered here, to

α-stable distributions. Further details of the mathematical theory of α-stable dis-

tributions may be found in Feller (1971), Janicki and Weron (1994), Samorodnitsky

and Taqqu (1994), Uchaikin and Zolotarev (1999) or Zolotarev (1986).

An α-stable distribution may be thought of as a generalisation of the normal dis-

tribution where the generalization allows greater concentration close to the mean,

more extreme values and possible skewness. The distribution depends on four

parameters α, β, γ and δ. These parameters 5 can be interpreted as follows

• α, (0 < α ≤ 2), is the basic stability parameter. It determines the weight in

the tails. The smaller the value of α the greater the frequency and size of

extreme events.

• β is a skewness parameter and −1 ≤ β ≤ 1. A zero beta implies that the

distribution is symmetric. Negative or positive β imply that the distribution

is skewed to the left or right respectively

• The parameter γ is positive and measures dispersion. It is similar to the

variance of a normal distribution

• The parameter δ is a real number and may be thought of as a location

measure. It is similar to the mean of a normal distribution

The α-stable distribution may be thought of as a family of distributions indexed

by the parameter α. When α = 2 the α-stable distribution is a normal distri-

bution. (In this case the β parameter becomes redundant and may be taken as

5. There are several parameterisations of the α-stable distribution. Here I follow the 1-
parametrisation of Nolan (2007)
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zero. The normal distribution has a variance of 2γ2) When α = 1 and β = 0 the

distribution becomes a Cauchy distribution. Apart from the normal and Cauchy

distributions (and one other of less interest here) these are the only instances

of α-stable distributions whose probability densities can be expressed in terms of

elementary functions. In general the evaluation of the α-stable density function

requires either the numerical inversion of a characteristic function or the possible

compilation and interpolation of tabulated values. This process has been made

feasible by recent advances in the power of micro-computers.

The origin of the attribute “stable” in the α-stable distribution is derived from

the property that the form of the density function of a sum of independent identi-

cally distributed α-stable random variables is, up to a scale and location parameter

the same (ie “stable”) as the distribution of the original variables. Let X1, X2, X3,

. . . , Xn be mutually independent variables with a common distribution R and let

Sn = X1+ · · ·+Xn. The distribution R is stable if for each n there exists constants

cn and γn such that 6

Sn
d
= cnX + γn (2)

This implies that time aggregation of a variable with independent α-stable incre-

ments leads, apart from a location and scale factors to the same distribution as

before aggregation. α-stable distributions are the only distributions with this prop-

erty. (Note that this “stable” property is not to be confused with the concept

of “infinite divisibility”. α-stable distributions are also infinitely divisible but this

property is different and is shared with many other distributions)

α-stable distributions also have a second unique property. One may recall the

central limit theorem which in one of its simpler forms says that if X1, X2, X3, . . . ,

Xn are independent identically distributed random variables with a finite variance

and Sn = X1 + · · · + Xn then the asymptotic distribution of Sn is normal. These

assumptions may be weaken considerably. Heuristically, if we drop the identically

distributed and finite variance assumptions keep independence and specify that no

individual variable has a significant effect on the mean the central limit theorem

6. The notation U
d
= V means that U and V have the same distribution
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continues to hold. We might consider if this last condition holds in economics or

finance. Ask yourself how many times you have inserted a dummy variable because

you felt that the value was an outlier. If we keep the independence requirement but

now allow for cases in which individual measurements may have an effect on the

mean then if the sum converges it converges to an α-stable distribution. Like the

normal distribution, the α-stable distribution will be a reasonable approximation to

a family of distributions.

Each member of the α-stable distribution (including the normal) is the asymp-

totic limit for some set of independent identically distributed random variables.

That α-stable distribution is said to be an attractor for that set of distributions

and the set of distributions is the domain of attraction for the specific α-stable dis-

tribution. It can be shown that α-stable distributions are the only non-degenerate

distributions that have domains of attraction.

Thus the α-stable distribution can account for many of the typical properties

of asset returns/losses

4 Empirical Results

In this section I calculate and evaluate static and dynamic estimates of VaR. The

four static estimates are based on

1. a normal distribution,

2. a t-distribution, or

3. an α-stable distribution and

4. a non-parametric quantile estimation procedure.

My initial evaluation of the parametric estimates is based on a comparison of

the parametric and non-parametric estimators.

The dynamic VaR estimates are based on Garch(1,1) processes with normal,

t, and α-stable innovations. If an estimate of VaR at p% is good then it should
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be exceeded in the sample close to p% of the time. For each of the VaR esti-

mates I calculate the exceedances and test the difference between the observed

and predicted exceedances. This same test is also applied to the static estimates.

All distribution parameters are estimated by maximum likelihood. The Tables

in appendices A.1, A.2 and A.3 give details of these estimates. Data sources and

software used are described in Appendix B

4.1 VaR Estimates

Tables 1 to 5 set out static estimates of the VaR at 10%, 5%, 1%, 0.5% and 0.1%

levels for an investment in each of the six total returns equity indices

• ISEQ (daily from 4 January 1988 to 31 January 2008)

• CAC40 (daily from 31 December 1987 to 31 January 2008)

• DAX30 (daily from 28 September 1959 to 31 January 2008)

• FTSE100 (daily from 31 December 1985 to 31 January 2008)

• Dow Jones Composite (DJC) (daily from 30 September 1987 to 31 January

2008)

• S&P500 (daily from 29 December 1989 to 31 January 2008)

The quantiles are calculated on the basis of returns following

• an α-stable distribution with parameters estimated by maximum likelihood

• a normal distribution with parameters estimated by maximum likelihood

• a t-distribution 7 with nonzero mean, nonzero scale and degrees of freedom

to be estimated by maximum likelihood

7. The probability density function of a t-distribution with mean µ, scale σ and degrees of
freedom ν is given by

f (x |µ, σ, ν) =
Γ[(ν + 1)/2]

(πν)1/2Γ(ν/2)

σ−1

[1 + (x − µ)2/(σ2ν)](ν+1)/2
, −∞ < x <∞.
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Table 1: 10% VaR for each equity index assuming the specified distribution
Distribution (1) Sample Quantile

Index Stable Normal t Quantile s.e. (2)

ISEQ 1.04 1.23 1.13 1.03 0.03
CAC40 1.48 1.61 1.52 1.43 0.03
DAX30 1.27 1.49 1.31 1.23 0.02
FTSE100 1.15 1.30 1.22 1.13 0.02
DJC 1.05 1.26 1.11 1.04 0.03
S&P500 1.10 1.20 1.14 1.09 0.03

(1) Harrell and Davis (1982)

(2) Bootstrap estimate

Table 2: 5% VaR for each equity index assuming the specified distribution
Distribution Sample Quantile

Index Stable Normal t Quantile (1) s.e. (2)

ISEQ 1.48 1.60 1.57 1.50 0.05
CAC40 2.02 2.08 2.07 2.04 0.05
DAX30 1.75 1.92 1.81 1.76 0.03
FTSE100 1.59 1.68 1.66 1.55 0.03
DJC 1.46 1.63 1.53 1.47 0.05
S&P500 1.54 1.55 1.56 1.55 0.04

(1) Harrell and Davis (1982)

(2) Bootstrap estimate

Table 3: 1% VaR for each equity index assuming the specified distribution
Distribution Sample Quantile

Index Stable Normal t Quantile (1) s.e. (2)

ISEQ 3.19 2.28 2.86 2.99 0.14
CAC40 3.89 2.95 3.49 3.59 0.17
DAX30 3.46 2.73 3.18 3.19 0.11
FTSE100 3.09 2.40 2.81 2.92 0.12
DJC 2.97 2.32 2.69 2.59 0.10
S&P500 3.25 2.21 2.75 2.73 0.10

(1) Harrell and Davis (1982)

(2) Bootstrap estimate
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Table 4: 0.5% VaR for each equity index assuming the specified distribution
Distribution Sample Quantile

Index Stable Normal t Quantile (1) s.e. (2)

ISEQ 4.67 2.53 3.58 3.66 0.17
CAC40 5.44 3.27 4.22 4.34 0.16
DAX30 4.91 3.02 3.91 4.12 0.21
FTSE100 4.33 2.66 3.40 3.48 0.23
DJC 4.25 2.57 3.31 3.25 0.20
S&P500 4.70 3.45 3.40 3.10 0.09

(1) Harrell and Davis (1982))

(2) Bootstrap estimate

Table 5: 0.1% VaR for each equity index assuming the specified distribution
Distribution Sample Quantile

Index Stable Normal t Quantile (1) s.e. (2)

ISEQ 12.00 3.04 5.91 5.55 0.55
CAC40 12.98 3.94 6.33 6.15 0.48
DAX30 11.98 3.63 6.12 6.44 0.42
FTSE100 10.37 3.20 5.12 5.61 0.71
DJC 10.52 3.10 5.22 6.27 1.45
S&P500 11.83 2.95 5.40 4.68 0.68

(1) Harrell -Davis (1982)

(2) Bootstrap estimate
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• A distribution free estimate of each quantile based on Harrell and Davis

(1982). A bootstrapped standard error of each non-parametric quantile esti-

mate was also calculated.

The estimates for the parametric distributions,in bold case, in the first three columns

are within two standard deviations of the non-parametric estimates. If we regard

the nonparametric estimates and their bootstrapped standard errors as accurate

such estimates are then, at least, consistent with the non-parametric estimates

and may be regarded as “good”.

On this criterion the estimates based on a normal distribution are of little value.

They over-estimate VaR at 10% are a little high at 5% and underestimate risk at

the lower levels.

The estimates for the α stable distribution are very good at the 10%, 5%

and not that bad at the 1% levels. At the 0.5% and 0.1% levels they appear to

overestimate the quantiles.

The t-distribution appears to perform well at the 1%, 0.5% and 0.1% levels

and not that bad at the 5% level.

4.2 Exceedances of VaR Estimates

If a p% VaR estimate is reasonable I would expect that losses should exceed it

approximately p% of the time. In these circumstances, the distribution or number

of times that the p% VaR is exceeded (the exceedances) can be approximated by a

Poisson 8 distribution with parameter given by p% of the sample size. Tables 6 to 10

present details of such counts of exceedances and an estimate of the probability of

a higher value than that found based on the assumption of this Poisson distribution.

Exceedances which accept the null at 95% level are set in bold font.

where Γ(·) is the gamma function. Note that the standard deviation of x is σ
√

ν
ν−2 . If µ = 0 and

σ = 1 this reduces to the standard Student’s t-distribution with ν degrees of freedom. The heavier
tails of the t-distribution are often used in economics and finance to model the fat tails that are
often observed. Often the justification is empirical. A Bayesian justification involves a mixture of
normal distributions with known mean and a prior inverse gamma distribution for the variance. For
more details and references see Weitzman (2007).

8. The poisson approximation to the binomial is sufficient here.
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Table 6: % Exceedances for 10% VaR given various distributional assumptions
Total Returns Index

ISEQ CAC40 DAX30 FTSE100 DJAC S&P500

Observations 5037 5056 12098 5578 5158 4559

Normal 7.35 8.13 7.20 7.48 6.79 8.64
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

Garch(1,1) with 9.18 10.88 9.18 9.77 9.36 10.13

Normal Errors (0.98) (0.00) (1.00) (0.70) (0.92) (0.38)

t 8.11 8.48 8.57 7.76 7.83 8.62
(1.00) (0.99) (1.00) (1.00) (1.00) (1.00)

d.f. 3.4 4.5 3.9 4.4 3.8 3.7

Garch(1,1) with 6.19 9.14 8.12 8.78 7.15 8.36
t Errors (1.00) (0.02) (1.00) (1.00) (1.00) (1.00)

α-Stable 9.77 9.39 9.52 9.56 9.87 9.87

(0.69) (0.91) (0.95) (0.84) 0.61 (0.60)

α-Stable 10.18 10.48 10.18 10.44 10.61 10.91

GARCH(1,1) (0.32) (0.13) (0.26) (0.15) (0.08) (0.03)

Figures in brackets are the estimated probability of a greater % than found
based on a Poisson distribution for the number of exceedances.

17



Table 7: % Exceedances for 5% VaR given various distributional assumptions
Total Returns Index

ISEQ CAC40 DAX30 FTSE100 DJC S&P500

Observations 5037 5056 12098 5578 5158 4559

Normal 4.40 4.79 4.07 4.10 4.11 4.98

(1.00) (0.74) (1.00) (1.00) (1.00) (0.51)

Garch(1,1) with 4.39 4.47 4.40 3.87 4.32 4.47

Normal Errors (1.00) (0.95) (1.00) (1.00) (0.99) (0.94)

t 4.17 4.27 4.40 3.87 4.65 4.47

(1.00) (0.95) (1.00) (1.00) (0.86) (0.94)
d.f. 3.4 4.5 3.9 4.4 3.8 3.7

Garch(1,1) with 3.87 4.27 3.87 4.12 3.28 3.90
t Errors (1.00) (0.99) (1.00) (1.00) (1.00) (1.00)

α-Stable 5.18 4.98 5.00 4.66 5.02 5.13

(0.27) (0.50) (0.47) (0.87) (0.46) (0.33)

α-Stable 5.30 5.58 5.24 5.45 5.20 5.51

GARCH(1,1) (0.16) (0.03) (0.11) (0.06) (0.25) (0.06)

Figures in brackets are the estimated probability of a greater % than found
based on a Poisson distribution for the number of exceedances.
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Table 8: % Exceedances for 1% VaR given various distributional assumptions
Total Returns Index

ISEQ CAC40 DAX30 FTSE100 DJC S&P500

Observations 5037 5056 12098 5578 5158 4559

Normal 2.12 1.76 1.61 1.70 1.47 1.97
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Garch(1,1) with 1.32 1.52 1.32 1.47 1.82 1.78
Normal Errors (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

t 1.03 1.01 1.00 1.08 0.83 0.92

(0.37) (0.44) (0.51) (0.26) (0.87) (.67)
d.f. 3.4 4.5 3.9 4.4 3.8 3.7

Garch(1,1) with 0.65 0.69 0.65 0.86 0.52 0.68
t Errors (1.00) (0.99) (1.00) (0.83) (1.00) (0.99)

α-Stable 0.79 0.83 0.81 0.82 0.62 0.35
(0.92) (0.87) (0.98) (0.90) (1.00) (1.00)

α-Stable 0.97 1.11 1.13 1.09 1.09 1.12

GARCH(1,1) (0.54) (0.20) (0.07) (0.22) (0.24) (0.19)

Figures in brackets are the estimated probability of a greater % than found
based on a Poisson distribution for the number of exceedances.
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Table 9: % Exceedances for 0.5% VaR given various distributional assumptions
Total Returns Index

ISEQ CAC40 DAX30 FTSE100 DJC S&P500

Observations 5037 5056 12098 5578 5158 4559

Normal 1.55 1.31 1.17 1.34 1.00 1.43
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Garch(1,1) with 0.81 0.91 0.82 0.95 1.16 1.16
Normal Errors (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

t 0.50 0.53 0.57 0.52 0.43 0.20
(0.46) (0.32) (0.12) (0.37) (0.74) (1.00)

d.f. 3.4 4.5 3.9 4.4 3.8 3.7

Garch(1,1) with 0.33 0.32 0.34 0.52 0.29 0.35

t Errors (0.99) (0.97) (0.99) (0.50) 0.98 (0.91)

α-Stable 0.18 0.18 0.31 0.25 0.21 0.09
(1.00) (1.00) (1.00) (1.00) 1.00 (1.00)

α-Stable 0.32 0.47 0.51 0.56 0.47 0.81

GARCH(1,1) (0.96) (0.55) (0.39 (0.24) (0.59) (0.81)

Figures in brackets are the estimated probability of a greater % than found
based on a Poisson distribution for the number of exceedances.
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Table 10: % Exceedances for 0.1% VaR given various distributional assumptions
Total Returns Index

ISEQ CAC40 DAX30 FTSE100 DJC S&P500

Observations 5037 5056 12098 5578 5158 4559

Normal 0.95 0.83 0.69 0.66 0.58 0.61
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Garch(1,1) with 0.34 0.33 0.34 0.43 0.54 0.55
Normal Errors (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

t 0.11 0.08 0.12 0.13 0.14 0.09

(0.32) (0.57) (0.24) (0.20) (0.15 ) (0.48)
d.f. 3.4 4.5 3.9 4.4 3.8 3.7

Garch(1,1) with 0.06 0.12 0.11 0.11 0.11 0.11

t Errors (1.00) (0.25) (0.32) (0.48) (0.26) (0.31)

α-Stable 0.00 0.00 0.01 0.04 0.02 0.00
(0.99) (0.99) (1.00) (0.92) (0.96) (0.99)

α-Stable 0.06 0.06 0.05 0.04 0.06 0.04

GARCH(1,1) (0.74) (0.74) (0.96) (0.92) (0.76) (0.083)

Figures in brackets are the estimated probability of a greater % than found
based on a Poisson distribution for the number of exceedances.
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The measures of VaR in the these tables include

• Static normal distribution with parameters estimated by maximum likelihood.

• Garch(1,1) with normal innovations estimated by maximum likelihood. This

gives rise to a dynamic VaR estimate which may be seen as a generalization

of the traditional Riskmetrics Group (1999) methodology. See appendix A.2

for details of estimates and specification tests of the GARCH(1,1) models.

• t-distribution with mean, scale and degrees of freedom estimated by maximum

likelihood (see footnote (7) on page 16)

• Garch(1,1) with t-errors estimated by maximum likelihood. The resulting VaR

may be compared to the Riskmetrics 2006 methodology (Zumbach (2006).

See appendix A.2 for details of estimates and specification tests

• α-stable distribution - parameters estimated by maximum liklihood. See ap-

pendix A.1 for details of estimates and specification tests

• α-stable Garch(1,1) - This is a variation of a TS-Garch(1,1) with α-stable

innovations. See Appendix A.3 for details.

Table 11 provides a summary of Tables 6 to 10 For each VaR level and for each

index it give details of

• the number of times the proportion of exceedances was significantly less than

the VaR level. In these cases the estimate of the risk is too high

• the number of times that exceedances were not significantly different to the

VaR level. In these cases the measure of risk can not be rejected

• the number of times the proportion of exceedances was significantly more

than the VaR level. In these cases risk has been under estimated.

On the basis of these results the α-stable GARCH(1,1) is better than all the

others. The observed exceedances are not statistically different from the expected

for any of the equity indices at any of the five levels considered. Figure 2 shows a

typical example of VaR estimated in this way and the corresponding losses
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Figure 2: Losses on S&P 500 and 1% VaR based on α-stable distributions
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The static α-stable and the t-distribution are next in order of merit. The

α-stable distribution performs best at the 10% and 5% levels and is somewhat

conservative at the 1% and 0.1% level and very conservative at the 0.5% level.

The t-distribution performs extremely well in the extreme tails of the distribution.

The ease of implementation of a VaR system based on a t-distribution, com-

pared to one based on an α-stable, combined with these results would incline many

people to favour the t-distribution. If a t-distribution with about 4 degrees of

freedom is appropriate for daily returns what distribution is appropriate for say

hourly returns? Assuming that there are no problems with the distribution of news

throughout the day then hourly returns will have a t-distribution with less than 1

degree of freedom. This does not make sense as the mean of such a distribution do

not exist. It would be very difficult to make sense of any kind of theory of finance if

this were the case. Aggregating a t-distribution over time would imply that returns

follow a t-distribution with about 80 degrees of freedom. I have seen no evidence

of this close an approximation to normality in asset returns. I also do not know of

any theory in economics or finance that would lead to a t-distribution for returns.

The idea that a t-distribution for asset returns results from a mixture of normal

random variables with variance following an inverse gamma distribution has been

argued in Weitzman (2007) is mathematically correct and as he admits has been

well known to Bayesian statisticians but had no sound basis in economic theory.

Many econometric models that fall down fail, not because there are problems with

their econometrics, but because the economics behind the model is faulty or non-

existent. The t-distribution may provide a good measure of what has been going

on in the tails of the distribution but the results may be very sensitive to policy

actions.

The normal distribution is conservative at the 10% level and greatly underesti-

mates risk at at the 1% and lower levels. These quantile estimates based on the

normal distribution are further evidence of the poor fit of the normal distribution

to the data.

Exceedances for the two GARCH models are not good with approximately three

quarters of the measures exceedances being significantly different from their ex-

pected values.
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Table 11: Summary Exceedances
Distribution

VaR Result Normal Garch t-distr. Garch α-Stable α-Stable All
Level (Normal) (t-distr) Garch

low 6 2 6 5 0 0 19
10% equal 0 3 0 1 6 6 16

high 0 1 0 0 0 0 1

low 4 4 3 6 0 0 17
5% equal 2 2 3 0 6 6 19

high 0 0 0 0 0 0 0

low 0 0 0 5 3 0 8
1% equal 0 0 6 1 3 6 16

high 6 6 0 1 0 0 12

low 0 0 1 3 6 0 10
0.5% equal 0 1 5 3 0 6 15

high 6 5 0 1 0 0 11

low 0 0 0 1 4 0 5
0.1% equal 0 0 6 5 2 6 19

high 6 6 0 0 0 0 12

low 10 6 10 20 13 0 59
All equal 2 6 20 10 17 30 85

high 18 18 0 0 0 0 36

Result -
low : % exceedances < VaR level - conservative view
equal : % exceedances not significantly different from VaR level
high : % exceedances > VaR level - liberal view
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Figure 3: 5% and 1% static and Dynamic VaR of Losses on S&P 500

5 Conclusions

The relative performance of the various measures of VaR considered may be sum-

marised as follows

The α-stable GARCH(1,1) model for returns provides the best measure of VaR.

It gives good estimates at all VaR levels for all the indices considered. The null

hypothesis of a different rate of exceedances can not be rejected in a single case.

For the Risk manager or the supervisor I have shown that accurate measures of

VaR can be obtained using an α-stable distribution. Theoretical justification can

be provided by the generalised central limit theorem and the time aggregation and

domain of attraction properties which define, and are unique to, this distribution.

Figure 4 compares the static and dynamic (GARCH) α-stable 1% and 5% VaR.

The static normal distribution performs very badly even at the conventional 5%

and 1% levels. It tends to over estimate VaR at the higher probability levels and

26



under estimate at the lower. This is what one would expect given the exponential

decay in the tails of the normal distribution. A normal VaR at 1% may be extremely

misleading if given to management.

The static t-distribution performs very well, particularly in the tails of the dis-

tribution. In contrast to the normal and α-stable distributions the t-distribution

lacks the stability property and does not possess a domain of attraction. Aggre-

gated t-distributions tend rapidly to a normal distribution. Disaggregation of a

t-distribution of daily returns would imply that the distribution of high frequency

returns would have very undesirable properties. The sometimes quoted justification

for a t-distribution as a normal mixture with variances following an inverse gamma

distribution is not very convincing.

The GARCH distributions with normal innovations performs somewhat better

than the static normal distribution. Curiously the GARCH distribution with t-

innovations does not performs worse than the static t-distribution but better than

the GARCH with normal innovations.

Then α-stable distribution performance is about equivalent to the t-distribution

but is good at conventional VaR levels. Extreme VaR at levels less than 1% tends

to be somewhat conservative but not always significantly so. While it is likely that

the α-stable distribution can be applied to all risk assessments it is an important

measure that provides a good measure of VaR at conventional levels and perhaps

conservative estimates at extreme levels. Given the likely effects of losses at these

extreme levels this is probably not a bad idea.

For the Risk manager or the supervisor I have shown that accurate measures of

VaR can be obtained using an α-stable distribution. Theoretical justification can

be provided by the generalised central limit theorem and the time aggregation and

domain of attraction properties which define, and are unique to, this distribution.

Figure 4 compares the static and dynamic (GARCH) α-stable 1% and 5% VaR.

The volatility of the dynamic VaR may give rise to problems. Daníelsson et al.

(2001) have asked if the adoption of dynamic VaR systems of risk management lead

to constrains on the financial system during times of liquidity shortage. Masschelein

(2007) has argued that, up to recent times, regulatory VaR requirements have not

been binding. It can be argued that if regulatory requirements had been more severe
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Figure 4: 5% and 1% static and Dynamic VaR of Losses on S&P 500
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Table 12: Estimates of Stable parameters ISEQ Returns
Coefficient Estimate 1

2
–confidence band

α 1.6503 (0.0427)
β 0.1026 (0.1069)
γ 0.5395 (0.0147)
δ -0.0476 (0.0263)
Parametrization 1

Goodness of fit 26.517 χ2(10)

Kolmogogorov-Smirnov 0.0134 0.3259
Stable Loglikelihood -7149
Normal Loglikelihood -6733
Likelihood Ratio Test 832

Basic Statistics

mean -0.0483
Standard Deviation 1.0004
Skewness 0.3883
Excess Kurtosis 5.0771

in less volatile times we may not have encountered the severe liquidity crisis that

exists today. The use of the kind of static α-stable VaR estimates provided here

might form a useful basis for deciding appropriate levels for such an arrangement.

I have also shown that α-stable estimates of VaR are feasible. They are a valu-

able and more accurate measure of VaR and would provide additional information

to a risk manager. They are, of course only one aspect of risk management.

A Appendix

A.1 Maximum Liklihood estimates of α-stable parameters

Tables 12 to 17 give results of maximum likelihood estimates of the α-stable pa-

rameters of the distribution of losses on total returns indices for the ISEQ, CAC40,

DAX30, FTSE100, DJAC and S&P500. Estimation is by maximum likelihood

computed in C++ using the stable library functions of Nolan (2005).
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Table 13: Estimates of Stable parameters CAC40 Returns
Coefficient Estimate 1

2
–confidence band

α 1.644 (0.040)
β 0.170 (0.132)
γ 0.761 (0.020)
δ -0.033 (0.037)
Parametrization 1

Goodness of fit 26.34 χ2(10)

Kolmogogorov-Smirnov 0.012 0.490
Stable Loglikelihood -8348.74
Normal Loglikelihood -8131.47
Likelihood Ratio Test 434.54

Basic Statistics

mean -0.045
Standard Deviation 1.281
Skewness 0.150
Excess Kurtosis 2.965

Table 14: Estimates of Stable parameters DAX30 Returns
Coefficient Estimate 1

2
–confidence band

α 1.7100 (0.0269)
β 0.0916 (0.0785)
γ 0.6568 (0.0112)
δ -0.0215 (0.0207)
Parametrization 1

Goodness of fit 19.8407 χ2(10)

Kolmogogorov-Smirnov 0.0077 0.4803
Stable Loglikelihood -18031
Normal Loglikelihood -19051
Likelihood Ratio Test 2039

Basic Statistics

mean -0.0254
Standard Deviation 1.1791
Skewness 0.2364
Excess Kurtosis 7.8457
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Table 15: Estimates of Stable parameters FTSE100 Returns
Coefficient Estimate 1

2
–confidence band

α 1.743 (0.038)
β 0.017 (0.126)
γ 0.600 (0.015)
δ -0.037 (0.027)
Parametrization 1

Goodness of fit 7.30765 χ2(10)

Kolmogogorov-Smirnov 0.007 0.937
Stable Loglikelihood -8061.9
Normal Loglikelihood -7676.9
Likelihood Ratio Test 768.0

Basic Statistics

mean -0.041
Standard Deviation 1.040
Skewness 0.700
Excess Kurtosis 8.794

Table 16: Estimates of Stable parameters DJAC Returns
Coefficient Estimate 1

2
–confidence band

α 1.697 (0.042)
β 0.122 (0.116)
γ 0.541 (0.014)
δ -0.039 (0.026)
Parametrization 1

Goodness of fit 37.06 χ2(10)

Kolmogogorov-Smirnov 0.017 0.112
Stable Loglikelihood -7306.64
Normal Loglikelihood -6692.84
Likelihood Ratio Test 1227.6

Basic Statistics

mean -0.040
Standard Deviation 1.011
Skewness 2.449
Excess Kurtosis 52.6741
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Table 17: Estimates of Stable parameters S&P500 Returns
Coefficient Estimate 1

2
–confidence band

α 1.676 (0.045)
β 0.167 (0.117)
γ 0.547 (0.016)
δ -0.030 (0.028)
Parametrization 1

Goodness of fit 62.46 χ2(10)

Kolmogogorov-Smirnov 0.021 0.021
Stable Loglikelihood -6227.4
Normal Loglikelihood -5991.13
Likelihood Ratio Test 472.55

Basic Statistics

mean -0.045
Standard Deviation 0.962
Skewness 0.160
Excess Kurtosis 3.637

A.2 GARCH estimates

Tables 18 to 29 give results of maximum likelihood estimates of various GARCH

models of the distribution of losses on total returns indices for the ISEQ, CAC40,

DAX30, FTSE100, DJAC and S&P500. I estimate ARMA(p,q)-GARCH(1,1) mod-

els for (p, q) ∈ (0, 0), (1, 0), (2, 0), (1, 1). Although there are some problems of

autocorrelation in the more parsimonious models, the number of exceedances ap-

pears to be robust with respect to the choice of ARMA components and the analysis

os based on a constant mean. Specification tests in bold case are not statistically

significant. Estimation testing etc. was completed using R (R Development Core

Team (2007)) and the Rmetrics library (Wuertz et al. (2007)).
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Table 18: Estimated ARMA(p,q) GARCH(1,1) Models with Normal innovations
(CAC40)

ARMA model
p 0 1 2 1
q 0 0 0 1

µ -0.066 -0.066 -0.066 -0.091
(0.015) (0.015) (0.015) (0.025)

φ1 0.179 0.019 0.363
(0.015) (0.015) (0.239)

φ2 0.019
(0.015)

θ1 0.380
(0.232)

ω 0.032 0.032 0.032 0.032
(0.006) (0.006) (0.006) (0.006)

α1 0.086 0.086 0.086 0.086
(0.009) (0.009) (0.009) (0.009)

β1 0.895 0.895 0.895 0.895
(0.011) (0.011) 0.011 (0.011)

Standardised Residual tests

J-B test 1090.50 1098.59 1104.99 1093.58
Residual Q10 17.66 15.70 15.46 16.16

Residual Q15 21.08 19.01 18.84 19.47

Residual Q20 24.33 22.52 22.37 23.04

Residual ARCH tests

ARCH Q10 13.94 13.92 13.77 13.92

ARCH Q15 17.02 17.01 16.85 17.01

ARCH Q20 18.54 18.50 18.37 18.53

Information Criterion Tests

AIC -3.115 -3.114 -3.112 -3.113
BIC -3.110 -3.108 -3.105 -3.106

5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 19: Estimated ARMA(p,q) GARCH(1,1) Models with t innovations (CAC40)
ARMA model

p 0 1 2 1
q 0 0 0 1

µ -0.074 -0.063 -0.061 -0.051
(0.011) (0.010) (0.010) (0.011)

φ1 0.144 0.140 0.292
(0.014) (0.015) (0.091)

φ2 0.015
(0.014)

θ1 -0.153
(0.094)

ω 0.022 0.021 0.020 0.021
(0.006) (0.006) (0.006) (0.006)

α1 0.095 0.097 0.096 0.097
(0.016) (0.016) (0.016) (0.016)

β1 0.886 0.885 0.886 0.885
(0.019) (0.019) (0.019) (0.019)

ν 5.236 5.258 5.245 5.262
(0.373) (0.372) (0.372) (0.374)

Standardised Residual tests

Residual Q10 120.66 22.51 19.15 17.57

Residual Q15 128.44 28.66 25.15 23.44

Residual Q20 134.82 33.24 29.97 28.16

Residual ARCH tests

ARCH Q10 3.08 3.74 3.76 3.74

ARCH Q15 5.82 6.53 6.55 6.53

ARCH Q20 7.34 7.93 7.93 7.92

Information Criterion Tests

AIC -2.521 -2.499 -2.498 -2.499
BIC -2.514 -2.492 -2.489 =2.489

5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 20: Estimated ARMA(p,q) GARCH(1,1) Models with Normal innovations
(DAX 30)

ARMA model
p 0 1 2 1
q 0 0 0 1

µ -0.036 -0.032 -0.034 -0.044
(0.008) (0.008) (0.008) (0.011)

φ1 0.099 0.104 0.241
(0.010) (0.010) (0.072)

φ2 -0.051
(0.010)

θ1 0.347
(0.069)

ω 0.031 0.030 0.030 0.030
(0.003) (0.003) (0.003) (0.003)

α1 0.130 0.131 0.132 0.132
(0.008) (0.008) (0.008) (0.007)

β1 0.851 0.850 0.850 0.850
(0.009) (0.008) 0.008 (0.008)

Standardised Residual tests

J-B test 24402 22917 21696 17038
Residual Q10 126.84 27.28 24.36 20.53
Residual Q15 133.29 32.64 30.09 25.95
Residual Q20 43.87 41.36 39.61 34.95

Residual ARCH tests

ARCH Q10 4.65 4.38 4.44 4.50

ARCH Q15 6.37 6.47 6.58 6.66

ARCH Q20 7.67 7.97 8.15 8.24

Information Criterion Tests

AIC -2.842 -2.834 -2.814 -2.832
BIC -2.840 -2.831 -2.827 -2.828

5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 21: Estimated ARMA(p,q) GARCH(1,1) Models with t innovations (DAX
30)

ARMA model
p 0 1 2 1
q 0 0 0 1

µ -0.041 -0.037 -0.039 -0.050
(0.008) (0.008) (0.008) (0.011)

φ1 0.093 0.098 -0.220
(0.009) (0.010) (0.070)

φ2 -0.048
(0.009)

θ1 0.320
(0.068)

ω 0.022 0.022 0.021 0.022
(0.003) (0.003) (0.003) (0.003)

α1 0.109 0.112 0.111 0.111
(0.008) (0.008) (0.008) (0.008)

β1 0.876 0.873 0.874 0.873
(0.008) (0.008) (0.008) (0.008)

ν 10.814 10.875 10.773 10.804
(0.826) (0.831) (0.821) (0.823)

Standardised Residual tests

Residual Q10 127.78 28.74 24.24 20.48
Residual Q15 134.36 34.26 30.15 26.08
Residual Q20 144.88 43.00 39.60 35.03

Residual ARCH tests

ARCH Q10 4.89 4.90 5.05 5.08

ARCH Q15 7.04 7.41 7.61 7.64

ARCH Q20 9.13 9.67 9.98 9.99

Information Criterion Tests

AIC -2.800 -2.792 -2.790 -2.790
BIC -2.797 -2.788 -2.785 =2.786

5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 22: Estimated ARMA(p,q) GARCH(1,1) Models with Normal innovations
(FTSE100)

ARMA model
p 0 1 2 1
q 0 0 0 1

µ -0.065 -0.064 -0.064 -0.064
(0.011) (0.011) (0.011) (0.022)

φ1 0.024 0.024 0.019
(0.014) (0.014) (0.302)

φ2 -.002
(0.014)

θ1 -0.004
(0.303)

ω 0.018 0.018 0.018 0.018
(0.004) (0.004) (0.004) (0.004)

α1 0.091 0.091 0.091 0.091
(0.009) (0.009) (0.009) (0.009)

β1 0.893 0.893 0.893 0.893
(0.011) (0.011) 0.011 (0.011)

Standardised Residual tests

J-B test 10791 10856 10885 10857
Residual Q10 17.05 10.09 10.01 10.08

Residual Q15 23.38 16.10 16.04 16.09

Residual Q20 28.31 20.95 20.96 20.95

Residual ARCH tests

ARCH Q10 8.79 8.10 8.09 8.10

ARCH Q15 11.49 10.80 10.80 10.80

ARCH Q20 15.83 15.21 15.20 15.21

Information Criterion Tests

AIC -2.644 -2.643 -2.642 -2.642
BIC -2.639 -2.637 -2.635 -2.635

5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 23: Estimated ARMA(p,q) GARCH(1,1) Models with t innovations
(FTSE100)

ARMA model
p 0 1 2 1
q 0 0 0 1

µ -0.068 -0.067 -0.068 -0.079
(0.014) (0.011) (0.011) (0.025)

φ1 0.021 0.022 -0.155
(0.014) (0.014) (0.313)

φ2 -0.017
(0.014)

θ1 0.178
(0.312)

ω 0.014 0.014 0.014 0.014
(0.003) (0.003) (0.003) (0.003)

α1 0.080 0.078 0.079 0.080
(0.009) (0.008) (0.008) (0.008)

β1 0.906 0.906 0.907 0.906
(0.009) (0.010) (0.010) (0.009)

ν 12.397 12.432 12.272 12.404
(1.549) (1.558) (1.532) (1.553)

Standardised Residual tests

Residual Q10 17.04 10.53 11.277 10.26

Residual Q15 23.36 16.57 17.39 16.28

Residual Q20 28.36 21.49 22.51 21.24

Residual ARCH tests

ARCH Q10 12.30 11.37 11.33 11.29

ARCH Q15 14.99 14.06 14.02 13.98

ARCH Q20 19.14 18.28 18.16 18.18

Information Criterion Tests

AIC -2.608 -2.607 -2.606 -2.606
BIC -2.602 -2.600 -2.598 =2.2.598
5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 24: Estimated ARMA(p,q) GARCH(1,1) Models with Normal innovations
(ISEQ)

ARMA model
p 0 1 2 1
q 0 0 0 1

µ -0.075 -0.062 -0.061 -0.048
(0.012) (0.012) (0.012) (0.012)

φ1 0.150 0.146 0.341
(0.016) (0.016) (0.099)

φ2 0.018
(0.016)

θ1 -0.197
(0.104)

ω 0.034 0.033 0.033 0.033
(0.012) (0.006) (0.006) (0.006)

α1 0.090 0.089 0.089 0.089
(0.011) (0.011) (0.011) (0.011)

β1 0.877 0.877 0.876 0.877
(0.016) (0.015) 0.015 (0.015)

Standardised Residual tests

J-B test 14401.46 15342.95 15272.99 15182.22
Residual Q10 119.87 21.10 17.56 15.47

Residual Q15 127.60 27.28 23.58 21.27

Residual Q20 134.68 32.47 29.06 27.72

Residual ARCH tests

ARCH Q10 2.55 3.69 3.80 3.63

ARCH Q15 4.58 5.77 5.93 5.73

ARCH Q20 5.57 6.63 6.70 6.59

Information Criterion Tests

AIC -2.633 -2.613 -2.612 -2.612
BIC -2.628 -2.606 -2.604 -2.604

5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 25: Estimated ARMA(p,q) GARCH(1,1) Models with t innovations (ISEQ)
ARMA model

p 0 1 2 1
q 0 0 0 1

µ -0.074 -0.063 -0.061 0.051
(0.011) (0.010) (0.010) (0.011)

φ1 0.144 0.140 0.292
(0.014) (0.015) (0.091)

φ2 0.015
(0.014)

θ1 -0.153
(0.094)

ω 0.022 0.021 0.020 0.021
(0.006) (0.006) (0.006) (0.006)

α1 0.095 0.097 0.096 0.097
(0.016) (0.016) (0.016) (0.016)

β1 0.886 0.885 0.886 0.885
(0.019) (0.019) (0.019) (0.019)

ν 5.236 5.258 5.245 5.262
(0.373) (0.372) (0.372) (0.374)

Standardised Residual tests

Residual Q10 120.66 22.51 19.15 17.57

Residual Q15 128.44 28.66 25.15 23.44

Residual Q20 134.82 33.24 29.97 28.16

Residual ARCH tests

ARCH Q10 3.08 3.74 3.76 3.74

ARCH Q15 5.82 6.53 6.55 6.53

ARCH Q20 7.34 7.93 7.93 7.92

Information Criterion Tests

AIC -2.521 -2.499 -2.498 -2.499
BIC -2.514 -2.492 -2.489 =2.489
5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 26: Estimated ARMA(p,q) GARCH(1,1) Models with Normal innovations
(S&P500)

ARMA model
p 0 1 2 1
q 0 0 0 1

µ -0.063 -0.059 -0.059 -0.062
(0.011) (0.011) (0.011) (0.018)

φ1 0.059 0.059 0.009
(0.016) (0.016) (0.227)

φ2 -0.001
(0.016)

θ1 -0.049
(0.227)

ω 0.009 0.009 0.009 0.009
(0.002) (0.002) (0.002) (0.002)

α1 0.066 0.066 0.066 0.066
(0.008) (0.008) (0.008) (0.008)

β1 0.925 0.926 0.926 0.926
(0.009) (0.008) (0.009) (0.009)

Standardised Residual tests

J-B test 1129 1139 1144 1 1148
Residual Q10 31.02 10.24 10.25 10.19

Residual Q15 43.71 21.86 21.79 21.79

Residual Q20 44.43 22.61 22.54 22.54

Residual ARCH tests

ARCH Q10 5.01 4.85 4.85 4.85

ARCH Q15 7.28 7.12 7.12 7.11

ARCH Q20 8.91 8.49 8.49 8.48

Information Criterion Tests

AIC -2.525 -2.521 -2.520 -2.520
BIC -2.519 -2.514 -2.512 -2.512

5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 27: Estimated ARMA(p,q) GARCH(1,1) Models with t innovations
(S&P500)

ARMA model
p 0 1 2 1
q 0 0 0 1

µ -0.075 -0.071 -0.073 -0.090
(0.011) (0.011) (0.011) (0.020)

φ1 0.046 0.047 -0.201
(0.015) (0.015) (0.188)

φ2 -0.025
(0.015)

θ1 0.250
(0.187)

ω 0.005 0.005 0.005 0.005
(0.002) (0.002) (0.002) (0.002)

α1 0.059 0.060 0.060 0.060
(0.008) (0.008) (0.008) (0.008)

β1 0.937 0.936 0.936 0.936
(0.009) (0.009) (0.009) (0.009)

ν 7.39 7.537 7.438 7.507
(0.769) (0.795) (0.779) (0.789)

Standardised Residual tests

Residual Q10 31.85 13.03 14.42 12.79

Residual Q15 44.57 24.88 26.14 24.52

Residual Q20 45.31 25.62 26.90 25.25

Residual ARCH tests

ARCH Q10 5.93 5.59 5.58 5.60

ARCH Q15 8.26 8.01 7.90 7.96

ARCH Q20 10.32 9.86 9.71 9.79

Information Criterion Tests

AIC -2.484 -2.480 -2.479 -2.479
BIC -2.476 -2.472 -2.469 =2.469
5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 28: Estimated ARMA(p,q) GARCH(1,1) Models with Normal innovations
(Dow Jones Composite)

ARMA model
p 0 1 2 1
q 0 0 0 1

µ -0.068 -0.066 -0.068 -0.107
(0.011) (0.011) (0.011) (0.021)

φ1 0.026 0.026 -0.571
(0.015) (0.015) (0.144)

φ2 -0.020
(0.015)

θ1 0.603
(0.141)

ω 0.022 0.023 0.023 0.022
(0.003) (0.004) (0.004) (0.004)

α1 0.091 0.092 0.091 0.092
(0.008) (0.008) (0.007) (0.008)

β1 0.889 0.889 0.889 0.889
(0.010) (0.010) (0.010) (0.010)

Standardised Residual tests

J-B test 11353 11939 11887 11831
Residual Q10 24.41 14.86 15.19 13.35

Residual Q15 32.11 22.91 23.21 21.32

Residual Q20 37.65 28.47 28.78 26.82

Residual ARCH tests

ARCH Q10 2.08 2.70 2.74 1.97

ARCH Q15 4.08 5.29 5.35 4.31

ARCH Q20 5.76 6.84 6.90 5.87

Information Criterion Tests

AIC -2.584 -2.584 -2.583 -2.582
BIC -2.579 -2.577 -2.575 -2.575

5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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Table 29: Estimated ARMA(p,q) GARCH(1,1) Models with t innovations (Dow
Jones Composite)

ARMA model
p 0 1 2 1
q 0 0 0 1

µ -0.071 -0.069 -0.072 -0.107
(0.010) (0.010) (0.010) (0.024)

φ1 0.019 0.020 -0.513
(0.014) (0.014) (0.250)

φ2 -0.035
(0.014)

θ1 0.541
(0.094)

ω 0.014 0.014 0.014 0.014
(0.003) (0.003) (0.003) (0.003)

α1 0.059 0.059 0.059 0.059
(0.007) (0.008) (0.008) (0.008)

β1 0.925 0.925 0.926 0.925
(0.009) (0.009) (0.009) (0.009)

ν 6.172 6.191 6.112 6.211
(0.500) (0.503) (0.494) (0.504)

Standardised Residual tests

Residual Q10 24.22 16.42 19.03 13.47

Residual Q15 32.15 24.89 27.45 21.82

Residual Q20 37.56 30.28 32.88 27.19

Residual ARCH tests

ARCH Q10 5.77 6.45 6.77 5.99

ARCH Q15 7.12 8.25 8.58 7.61

ARCH Q20 8.46 9.51 9.83 8.85

Information Criterion Tests

AIC -2.496 -2.499 -2.493 -2.494
BIC -2.489 -2.492 -2.484 =2.485

5% critical points for χ2 distribution with 2 ,10, and 20
degrees of freedom are 5.99, 18.31, 25.00 and 31.41 respectively
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A.3 α-stable GARCH Estimates and VaR

The usual GARCH(p,q) model takes the form

εt = ztσt

where zt is an iid process with zero mean and unit variance. The conditional

variance of this process is σ2t . σ
2
t is taken to follow various stochastic processes.

The GARCH process is defined as the following process.

σ2t = ω +

p
∑

i=1

αiε
2
t−i +

p
∑

i=1

βiσ
2
t−i

In the GARCH estimates above zt was taken to follow either a normal or a t-

distribution. The residuals in both the normal and t-distributions for zt showed

considerable excess kurtosis.

It would be attractive to model the zt with an α-stable distribution. The exact

formulation can not be followed in the general case when a < 2 as the second

moment of the distribution of zt does not exist. Following Panorska et al. (1995)

or Rachev and Mittnik (2000) we say that x follows a stable GARCH(α,p,q) if Xt

is α-stable with parameters α, β, γ = γt and δ where

γt = ω +

q
∑

i=1

αi |xt−i − δ|+

p
∑

i=1

βiγt−i (3)

and ai , i = 1, . . . , q and bj , i = 1, . . . , p and ω > 0. Panorska et al. (1995)

establishes stationarity conditions for the process in equation (3). For the stable

GARCH(1,1) process, estimated here, we require that β1 + λα1 < 1 where λ

is a function of α and, for example, λ = 1.5091, 1.3709, and 1.2687 for α =

1.6, 1.7, and 1.8 respectively. All α-stable processes estimates here satisfy these

restrictions and may be taken to be stationary.

Parameters were estimated by maximum likelihood using C++ and the STABLE
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Table 30: Estmated Parameters of α-stable GARCH loss distributions
ISEQ CAC40 DAX30 FTSE100 DJC S&P500

α 1.80 1.95 1.94 1.95 1.88 1.91
(0.020) (0.0084) (0.0085) (0.016) (.023) (0.0024)

β 0.175 0.727 0.362 0.851 0.438 0.703
(0.035) (0.0041) (0.0078) (0.165) (0.066) (0.0014)

δ -0.0581 -0.0657 -0.0315 -0.0522 -0.513 -0.550
(0.047) (0.00026) (0.00070) (0.0098) (0.022) (2.7e-5)

ω 0.00984 0.0104 0.0128 .00862 0.00761 0.00463
(.00028) (2.4e-05) (0.00018) (0.0054) (0.00088) (5.8e-6)

α1 0.0599 0.0570 0.0738 0.0584 .0426 0.0471
(0.0024) (9.7e-05) (0.00040) (0.0085) (0.00073) (5.0e-5)

β1 0.911 0.922 0.897 0.919 0.937 0.939
(0.0033) (0.0013) (0.0012) (0.173) (.0016) (0.00053)

library functions of Nolan (2005). The optimisation 9 process was started using the

Nelder-Mead minimisation algorithm and continued to completion using the BFGS

algorithm. Standard errors of the estimates were derived from the inverse Hessian

matrix calculated during the minimisation process.

9. maximisation was completed by minimizing the negative of the log likelihood

46



Table 31: Exceedances and percentage exceedances for α-stable GARCH VaR
estimates
Index VaR Level

Observations 10.00% 5.00% 1.00% 0.50% 0.10%

ISEQ Count 5037 513 267 49 16 3
% 10.18 5.30 0.97 0.32 0.06

CAC40 Count 5056 530 282 56 24 3
% 10.48 5.58 1.11 0.47 0.06

DAX30 Count 12098 1232 634 137 62 6
% 10.18 5.24 1.13 0.51 0.05

DJC Count 5156 547 268 56 24 3
% 10.61 5.20 1.09 0.47 0.06

FTSE100 Count 5575 582 304 61 31 2
% 10.44 5.45 1.09 0.56 0.04

S&P500 Count 4557 497 251 51 18 2
% 10.91 5.51 1.12 0.39 0.04

All Count 37479 3901 2006 410 175 19
% 10.41 5.35 1.09 0.47 0.05
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B Data and Software

B.1 Data

The total returned indices used in this analysis were downloaded from the Reuters

EcoWin database. The series used were

• France, Paris SE, CAC 40 Index, Total Return, Close, EUR, (ew:fra15660).

• Germany, Deutsche Boerse, DAX 30, Index, Total Return, Close, EUR,

(ew:deu15500).

• United States, Dow Jones, Averages, Composite Index, Total Return, Close,

USD, (ew:usa15575200).

• United Kingdom, FTSE, 100, Index, Total Return, Close, GBP, (ew:gbr15500200).

• United States, Standard & Poors, 500 Composite, Equal Weighted Index,

Total Return, Close, USD, (ew:usa15508200).

• Ireland, Irish SE, ISEQ Index, Total Return, Close, EUR, ew:irl15550.

B.2 Software

The parameters of α-stable distributions were estimated by Maximum Likelihood

using C++ and the Dynamic link Libraries of Nolan (2005). Other statistical anal-

ysis was completed in R (R Development Core Team (2007)) (using the Rmetrics

(Wuertz et al. (2007)), QRMlib (McNeil and Ulman (2007)) and related R pack-

ages), Gretl (Cottrell and Lucchetti (2007)) and Mathematica (Wolfram (2003)).
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