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1 Introduction

Purchasing power parity (ppp) has become a major subject of research in
applied economics. In part, this is due to its crucial role in both the theory
of exchange rates and international finance. Recent surveys include Rogoff
(1996), Sarno and Taylor (2002), and Taylor and Taylor (2004). The em-
pirical analysis has generally kept pace with developments in time series
econometrics. Two major areas of research are the mean reversion charac-
teristics of the real exchange rate [see Cashin and McDermott (2004)] and
its nonlinear representation [see Sarno (2005)]. However, the mainstream
literature in the area has as yet to fully utilise two recent developments in
econometric theory, namely, long memory models and random field-based
inference. These could provide useful additional tools for investigating both
mean reversion and nonlinearity in ppp analysis.

From the econometrics literature, it is clear that nonstationarity and
nonlinearity are closely related. It has been well known for many years
that it is difficult to distinguish statistically between difference stationary
series and nonlinear but stationary series; see Perron (1989) and Harrison
and Bond (1992). Recent works in this area include Lee, et al. (2005),
Hong and Phillips (2005), and Basci and Caner (2005). Increasingly, the
analysis uses the fractional integration framework rather than the ‘knife-
edge’ I(1)/I(0) approach to consider the interaction between nonlinearity
and nonstationarity. For example, Diebold and Inoue (2001) and Perron
and Qu (2004) investigate the effects of nonlinearity on the estimation of
the fractional integration parameter, while Hsu (2001) and Krämmer and
Sibbertsen (2002) examine the impact of long memory on estimates and tests
of structural change. Other recent work by Dolado, et al. (2005), Gil-Alana
(2004) and Mayoral (2005) has devised new test procedures for fractionality
and/or nonlinearity. However, in most cases the form of the nonlinearity
needs to be known.

The aim of this paper is to use two recent developments in econometric
theory discussed in Bond, et al. (2005b) to explore the time series charac-
teristics of simple empirical interpretations of ppp theory using Irish data.
The first of these is the Dolado, et al. (2002) fractional augmented Dickey-
Fuller (fadf) test; the second is the random field regression approach to the
investigation of nonlinearity due to Hamilton (2001). The structure of the
paper is as follows. Section 2 provides some background, briefly describing
the theory of ppp and the few previous Irish studies. Section 3 explains
popular approaches to modelling nonlinearity, the random field regression

1The authors wish to thank Jonathan H. Wright, Assistant Director, Division of Mon-
etary Affairs, The Federal Reserve Board, Washington DC 20551, for providing some of
the data used in this study.
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model of Hamilton (2001) and the concept of fractional integration. Sec-
tion 4 contains an account of the Dolado, et al. (2002) fadf test, as well
as the methods of inference employed in Hamilton’s approach to nonlinear-
ity. Section 5 gives details of the data and the precise approach adopted in
the analysis in this paper, while the results are presented and discussed in
Section 6. Finally, Section 7 concludes by considering how the methodology
might assist in the development of the general discussion of ppp.

2 Background

A simple statement of the purchasing power parity hypothesis is that na-
tional price levels should be equal when expressed in a common currency.
More formally, if st is the logarithm of the nominal exchange rate (expressed
as units of foreign currency per unit of domestic currency), pt and p∗t are
the logarithms of the domestic and foreign price levels, respectively, and qt

is the logarithm of the real exchange rate in period t = 1, 2, ..., T , then for
all t,

qt = st + pt − p∗t . (1)

It follows that qt must be stationary for long run ppp to hold. If the mean
of qt, E(qt), is zero, we have absolute ppp, whereas if E(qt) �= 0, we have
relative ppp. Most of the empirical studies of ppp have either been concerned
with testing whether qt has a mean reversion tendency over time or whether
st, pt and p∗t move together over time.

This latter work has generally been concerned with models whose sim-
plest form is

st = α0 + α1pt + α2p
∗
t + εt, (2)

where εt is white noise. Early studies were concerned with whether the esti-
mated values of the parameters of various versions of Equation (2) were as
predicted; see, for example, MacDonald and Taylor (1992). As awareness of
time series dynamics increased, the issue changed to one of whether Equa-
tion (2) is a cointegrating regression. Papers such as those by Thom (1989),
Wright (1994) and Kenny and McGettigan (1999) take such an approach
with Irish data, using the now well-known Engle-Granger (1987) two-step
method or Johansen (1988) approach to cointegration. The results of these
Irish studies have been confusing. In some cases, ppp could not be accepted,
whereas in others it could not be rejected. Nonrejection seemed most com-
mon when either prices were split into their component parts or other vari-
ables were included in the model. For instance, Kenny and McGettigan
(1999) distinguished between prices in the traded and nontraded sectors;
Wright (1994) considered interest rate differentials, along with the variables
in Equation (2).

In recent years, the emphasis has generally shifted from considering mod-
els of the form of Equation (2), to considering directly the behaviour of
{qt}T

t=1, the sequence of real exchange rate values. Within the I(1)/I(0)
framework, most of the initial studies failed to reject the hypothesis of real
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exchange rates being I(1) for recent periods of flexible exchange rates.2 This
failure to reject the possibility of unit roots in real exchange rate series im-
plies a lack of mean reversion, which undermines the ppp hypothesis. The
explanation often given for this nonrejection is the recognised low power of
traditional unit root tests, such as the standard Dickey-Fuller test. To over-
come this problem, two general approaches have been adopted. The first has
been the construction and use of long series of exchange rate data and more
powerful asymptotic tests; see Taylor (2002). The second, using panel data,
attempts to estimate the half life of the mean reversion of the real exchange
rate; see Cashin and McDermott (2004). Another explanation has been that
the real exchange rate is time varying and requires the use of other factors
in its modelling; see Lane and Milesi-Ferretti (2002), who identify relative
output levels, terms of trade and the net foreign assets in their linear model
for the Irish real exchange rate. There is, though, a third possibility that
is receiving increasing attention, and this is described in some detail in the
following section.

3 Nonlinearity and Nonstationarity

The alternative explanation that has been gaining ground in the literature
suggests the possibility that real exchange rate generating processes are in
fact nonlinear. It is argued that nonlinearities arise because of transactions
costs in international arbitrage; see Sarno (2005) for further details and
discussion of the argument.

3.1 Smooth transition autoregressive models

The standard way to model the nonlinearities has been to use smooth tran-
sition autoregressive (star) models; see Teräsvirta (1994). Assuming that
the real exchange rate is a stationary process, the star representation can
be written as

qt = ϕ′zt + θ′ztG(γ, c, τt) + εt, (3)

where εt ∼ iid(0, σ2), zt = [1 qt−1 . . . qt−p]′, and ϕ and θ are (p + 1)-vectors
of parameters. The transition function G(γ, c, τt) determines the degree
of mean reversion and is itself a function of γ, the slope coefficient, c the
location parameter and τt the transition variable. Normally τt is set to be a
lagged value of qt.

There has been little discussion about the choice of specification of the
transition function G. It is generally accepted, following Taylor, et al. (2002),
that its form is exponential:

G(γ, c, τt) = 1 − exp
[−γ(τt − c)2

]
, (4)

and the resultant model is known as the exponential smooth transition au-
toregressive (estar) model. The reason for this choice is that it is felt that

2In the literature there is some confusion between unit root testing and testing for a
random walk. The unit root hypothesis includes the random walk hypothesis but a unit
root might exist for reasons other than that the series in question is a random walk. Data
may be generated by a more complex nonstationary dynamic process.
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the movement of the real exchange rate is symmetrical. However others,
such as Sen and Baharumshah (2003), argue that the asymmetric logistic
function (and hence the lstar model) should also be considered, i.e.,

G(γ, c, τt) = [1 + exp [−γ(τt − c)]]−1 , (5)

on the grounds that there is little empirical evidence to support the use of
estar models.

A more general alternative to the estar model is the lstar2 model:

G(γ, c, τt) =

[
1 + exp

[
−γ

2∏
k=1

(τt − ck)

]]−1

. (6)

The use of the lstar2 model overcomes the problem that, as γ → ∞,
Equation (4) becomes linear. However, there is a very different alternative
method available.

3.2 Random field regression models

This other approach to modelling nonlinearity is provided by random field
regression. Dahl (2002) showed that the random field approach has relatively
better small sample fitting abilities than a wide range of parametric and
nonparametric alternatives, including lstar and estar models. The idea
of using random field models to estimate and test for nonlinear economic
relationships was introduced by Hamilton (2001) and is as follows.

If yt is a stationary process, εt ∼ nid(0, σ2), and xt is a k-vector, that
may include lagged dependent variables, then the basic model is

yt = µ(xt) + εt, (7)

where the form of the conditional expectation functional, µ(xt), is unknown
and assumed to be determined by the outcome of a random field. Hamilton
suggests representing µ(xt) as consisting of two components. The first is the
usual linear component, while the second, a nonlinear component, is treated
as stochastic and hence unobservable. Both the linear and nonlinear com-
ponents contain unknown parameters that need to be estimated. Following
Hamilton, the conditional mean function is written as

µ(xt) = α0 + α′
1xt + λm(x̄t), (8)

where x̄t = g�xt, g is a k-vector of parameters and � denotes the Hadamard
(element-by-element) product of matrices. The function m(x̄t) is referred to
as the random field. If the random field is Gaussian, it is defined fully by its
first two moments. If Hk is the covariance matrix of the random field, with
a typical element Hk(x, z) = E[m(x)′m(z)], Equation (7) can be rewritten
as

yt = α0 + α′
1xt + ut, (9)

where
ut = λm(x̄t) + εt, (10)
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or in matrix form
y = Xβ + u, (11)

where β = [α0 α′
1]
′. It follows that

u ∼ N(0, λ2Hk + σ2IT ). (12)

Treating equations (11) and (12) as a generalised least squares problem,
the associated profile maximum likelihood function can be obtained and
estimated. The only problem is that the form of the covariance matrix is
unknown. Hamilton derives Hk as a simple moving average representation
of the random field based on g, using an L2-norm measure. He shows that
even under fairly general misspecification, it is possible to obtain consistent
estimators of the conditional mean. Additional results on the consistency of
the parametric estimators obtained from this approach are given in Dahl, et
al. (2005).

3.3 Long memory models

Related to the issues of nonlinearity and nonstationarity is the concept of
long memory. However, long memory has not played a central role in the
discussion of ppp, despite being used extensively in other areas of exchange
rate analysis, such as the forward rate anomaly [see Bond, et al. (2006)], and
being used in the early and heavily cited works by Diebold, et al. (1991) and
Cheung and Lai (1993). The papers by Cheung and Lai (2001) and Robinson
and Iacone (2005) are two of the few recently published works that apply
the concept to ppp.

A series {yt}∞t=0 is said to be integrated of order d, denoted by I(d), if
the series has to be differenced d times before it is stationary. In the classical
analysis, d is an integer and the majority of investigation has involved the
I(1)/I(0) framework. That is, either ∆yt = yt − yt−1 or yt is stationary. In
fractional integration analysis, the restriction that d is an integer is relaxed.
This leads to a more general formula for an integrated series of order d given
by

∆dyt = yt−dyt−1+
1
2!

d(d−1)yt−2−. . .+
(−1)j

j!
d(d−1) . . . (d−j+1)yt−j +. . . ,

(13)
which is I(0). In the case where 0 < d < 1, it follows that not only the
immediate past values of y but values from previous time periods influence
the current value. If 0 < d < 0.5, then the series {yt}∞t is stationary; and if
0.5 ≤ d < 1.0, then {yt}∞t is nonstationary. Both estimation and inference
in the case where d is not an integer is more complex than in the standard
integer d case [see Bond, et al. (2005b)] and this could be an explanation
for the lack of uptake of the concept in the analysis of ppp.

The issue of trying to accommodate the possibility of both nonlinearity
and nonstationarity has been the subject of some recent research. In partic-
ular, Haug and Basher (2004), have used the rank test proposed by Breitung
(2001) to test for nonlinear cointegration, while Hong and Phillips (2005)
have developed a modified version of the reset test that has power against
both nonlinear cointegration and the absence of cointegration.
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4 Fractional ADF and Random Field Inference

As mentioned in Section 1, the first of the two recent tests whose usefulness
in helping to explore ppp empirically is to be investigated is the fadf test
introduced by Dolado, et al. (2002). This is a simple-to-implement paramet-
ric test that should be attractive to practitioners. The second is based on
the random field regression approach to nonlinearity introduced by Hamil-
ton (2001) and Dahl and González-Rivera (2003). The various methods of
handling this approach are more complex than fadf testing, but they are
attractive because, unlike star models, they do not rely on any specific
nonlinear functional form being specified prior to estimation.

4.1 The FADF test

The Dolado, et al. (2002) approach to testing for fractionality is based on
the distribution of the t-statistic on φ from the generalised adf regression

∆d0yt = φ∆d1yt−1 +
p∑

i=1

ζiyt−i + υt, (14)

where υt is a hypothesised white noise error. For testing purposes, Dolado,
et al. (2002) set d0 equal to 1. The test of the null hypothesis H0 : φ = 0 is
then a test that the series {yt}∞t=0 is I(1) against the alternative hypothesis
that the series is I(d1). They showed that if 0.5 ≤ d1 < 1.0, the t-statistic
for φ under H0 follows an asymptotic normal distribution, while if 0 < d1 <
0.5, the t-statistic follows a nonstandard distribution of fractional Brownian
motion. However, they also showed that in the practically realistic case in
which d1 is unknown, the t-statistic has an asymptotic normal distribution
for 0 ≤ d1 < 1, provided that a T− 1

2 -consistent estimator of d1 is used.

4.2 Random field regression

The additive random field function used by Hamilton suggests that a simple
method of testing for nonlinearity is to check if λ, or λ2, is zero or not.
Hamilton showed that if λ2 = 0 and the nonlinear model is estimated for a
fixed g, the maximum likelihood estimate λ̃ is consistent and asymptotically
normal. Thus a test based on the use of the standard normal probability
table is possible, though it is computationally complex for reasons discussed
by Hamilton (2005) and Bond, et al. (2005a). Given the assumption of
normality and the linearity of Equation (7) under the null hypothesis that
λ2 = 0, a simpler alternative uses the Lagrange multiplier principle. Hamil-
ton showed that provided the covariance function of the random field can be
derived, for a fixed g (Hamilton uses the mean of its prior distribution), this
only requires a single linear regression to be estimated. Using a covariance
function based on the L2-norm, Hamilton (2001) derived the appropriate
score vectors of first derivatives, for k = 1, 2, .., 5, and the associated infor-
mation matrix, and proposed a form of the lm test for practical application.
As the test statistic, λE

H , is distributed as χ2
1 under the null hypothesis, lin-

earity would be rejected if λE
H exceeded the critical value χ2

1,α for the chosen
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level of significance α.3 For example, at the α = 5 per cent level, the null
hypothesis would be rejected if λE

H > 3.84.
The usefulness of the Hamilton lm test depends on a set of nuisance

parameters that are only identified under the alternative hypothesis. As
Hansen (1996) shows, dealing with unidentified nuisance parameters by as-
suming full knowledge of the parameterised stochastic process that deter-
mines the random field may have adverse effects on the power of the test.
To take account of this, Dahl and González-Rivera (2003) introduce other
lm tests that extend the Hamilton approach. The first, based on the statis-
tic λE

OP , assumes, like Hamilton’s test, knowledge of the covariance matrix,
but its behaviour is based on the L1-norm. The nuisance parameters are
still present but now only enter the test in a linear fashion. The second,
the λA

OP test, only assumes that the covariance function is smooth enough
to be depicted by a Taylor expansion. The final test is a test of the null
hypothesis H0 : g = 0; this g-test makes no assumption about either the
covariance function or λ. Dahl and González-Rivera (2003) show that in
many circumstances, λA

OP and the g-test have better power than other tests
of nonlinearity.

The full importance of Hamilton’s random field approach is only realised
when the parameters λ and g are estimated. In particular, the estimated
value of g can be used for inference on the form of the nonlinearity. A highly
significant gi, i = 1, 2, ..., k, suggests that the corresponding variable plays
an important role in the nonlinearity of the model. Hamilton showed that
estimating the unknown parameters ϕ = {α0,α1,g, σ2, λ} can be reduced
to maximum likelihood estimation of a reparameterisation of equations (7)
and (8):

η (y,X;g, ζ) = −T

2
ln(2π) − T

2
ln σ2 (g, ζ) − 1

2
ln |W (X;g, ζ) | − T

2
, (15)

and
β̃ (g, ζ) =

[
X′W (X;g, ζ)−1 X

]−1 [
X′W (X;g, ζ)−1 y

]
, (16)

σ̃2 (g, ζ) =
1
T

[
y − Xβ̃ (g; ζ)

]′
W (X;g; ζ)−1

[
y − Xβ̃ (g; ζ)

]
, (17)

where ζ = λ
σ and W (X;g, ζ) = ζ2Hk + σ2IT . The profile likelihood can

be maximised with respect to (g, ζ) using standard optimisation algorithms,
though as Bond, et al. (2005a) point out, care needs to be taken because
of computational difficulties. Also, as Hamilton (2005) explains, other com-
putational issues make it is possible for the nonlinearity tests based on λ
to be strongly significant but the results of the nonlinear maximisation of
the likelihood function to suggest that ζ is insignificant. Once estimates for
g and ζ have been obtained equations (16) and (17) can be used to obtain
estimates of β and σ.

3The notation used here for the λ statistic is that of Dahl and González-Rivera (2003).
The superscript E shows that full knowledge of the parametric nature of the covariance
function is assumed. The alternative is superscript A, which signals that no assumption
about the covariance function is assumed. The subscript H shows that the Hessian of
the information matrix is used. The alternative is subscript OP, which indicates that the
outer product of the score function is used.
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5 Methodology

To investigate the usefulness of the fadf test and the Hamilton random field
approach in exploring and understanding the issues surrounding ppp, this
paper applies the techniques to Irish data. The data used are for Ireland
and Germany and Ireland and the United Kingdom. In both cases, the
observations are quarterly and run from the first quarter of 1975 to the
third quarter of 2003, inclusive, giving a sample size of 115 observations. The
specification for the explanatory model used is taken from Wright (1994),
namely,

st = α0 + α1pt + α2p
∗
t + α3it + α4i

∗
t + εt, (18)

where, in addition to the variables defined in Section 2, it and i∗t are the
domestic and foreign interest rates. The real exchange rate series, {qt}T

t=1,
is constructed using Equation (1).4

To place the long memory and random field analysis into context, the
standard I(1)/I(0) analysis using the adf unit root test is conducted. The
strategy of Dolado, et al. (1990), to determine whether the adf regressions
have significant constants or trends, is adopted. The lag length for the adf

test is determined using the modified Akaike information criterion (maic),
which Ng and Perron (2001) showed to be a generally better decision criteria,
as it takes account of the persistence found in many series. The alternative
kpss and ng unit root tests are also applied, the latter being generally more
powerful against the alternative of fractional integration than the standard
adf; see Kwiatkowski, et al. (1992) and Perron and Ng (1996), respectively.
These procedures are implemented using the Eviews package.

Following on from this traditional analysis, the issue of fractional in-
tegration is investigated. Two approaches to applying the fadf test have
emerged in the literature. The first, stemming from Hansen (1999), is to
run the fadf regression for various values of d ∈ [0, 1) and either tabulate
or plot the test statistic results before making any inferences; see Heravi
and Patterson (2005). The second, suggested by Dolado, et al. (2002), is
to obtain a consistent parametric estimate of d and apply the fadf test for
this value. It is this second approach that is adopted here. The ‘over differ-
enced’ ARFIMA model, which uses the first differences of the observations
on a variable rather than the raw levels observations themselves, is estimated
to avoid the problems associated with drift, as recommended by Smith, et al.
(1997). Two parametric estimates of d are calculated using the Doornik and
Ooms (1999) ARFIMA package, namely, the exact maximum likelihood (eml)
estimate produced by the algorithm suggested by Sowell (1992),5 and an
approximate maximum likelihood estimator based on the conditional sum
of squared näıve residuals, developed by Beran (1995) and referred to by
Doornik and Ooms (1999) as a nonlinear least squares (nls) estimator. The
nonparametric estimate of d from the log-periodogram method of Geweke
and Porter-Hudak (1983) (gph) and the semiparametric estimate from the

4The short-term interest rates were obtained from EcoWin; the remainder of the series
were provided by Jonathan H. Wright.

5The Sowell algorithm requires that d < 0.5, which is another reason for using the
‘over-differenced’ model.
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Gaussian method (gsp) discussed by Robinson and Henry (1998) are also
available in ARFIMA; these are also calculated. The estimates of d are then
used in the fadf test, with the maic being used to set the lag length for
the test.

Traditional cointegration analysis is then applied to the simple ppp

model of Equation (2). Firstly, the Engle and Granger (1987) two-step
procedure is used, with the lagged residuals from the levels regression serv-
ing as the error correction term. Then the Johansen (1988) VAR approach
is applied to the data. The effect of applying the Johansen (2002) small
sample correction factor is also investigated. The Eviews package is used
for the Engle-Granger and Johansen analysis, with RATS being employed for
the calculation of the Johansen correction factor, using Johansen’s program.

The analysis then turns to an examination of the possibility of nonlinear-
ity in the data. For the causal models, the standard reset test is applied,
together with the random field based tests described above. Also, for an au-
toregressive model involving qt, the now standard star tests for nonlinearity
are applied. These tests derive from the model

qt = β0 +
3∑

j=1

βj z̃tj τ j
t + u∗

t , t = 1, 2, ..., T, (19)

where τt is the tth observation on the transition variable, z̃tj , t = 1, 2, 3, is
the tth observation on the jth explanatory variable, which in the simple au-
toregressive case is just the j-period lagged value of qt, and u∗

t is an iid(0, σ2)
disturbance. The lag length for the star tests is decided by reference to
both the Akaike information criterion (aic) and the Schwarz information
criterion (sic) .

The four standard tests have the following null hypotheses:

H0 : β1 = β2 = β3 = 0
H04 : β3 = 0,
H03 : β2 = 0|β3 = 0,
H02 : β1 = 0|β2 = β3 = 0.

If H03 yields the strongest rejection, the lstar or estar model is selected.
If one of the other hypotheses yields the strongest rejection the lstar2

model is used. The star analysis is conducted using the JMulTi package of
Lütkepohl and Krätzig (2004), available at http://www.jmulti.de/.

Finally, the parameters of the random field model are estimated. The
random field analysis is carried out using the Gauss code provided by Hamil-
ton (2001) at http://weber.ucsd.edu/˜jhamilto/. This code includes the
Dahl and González-Rivera (2003) tests;6 it was adapted so as to apply the
algorithm switching approach to the numerical optimisation suggested by
Bond, et al. (2005a). Specifically, switching between the Steepest Descent
and Newton algorithms was employed. Hamilton’s (2001) covariance speci-
fication was retained and an initial value of ζ = 0.5 was used.

6Code for the Dahl and González-Rivera (2003) tests is also available from Dahl’s
webpage, namely, http://www.krannert.purdue.edu/faculty/dahlc/.
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6 Results

6.1 Univariate analysis

The results of the basic unit root analysis are given in Table 1.7 In half of the
cases, the Dolado, et al. (1990) testing strategy suggested that the existence
of a trend in the adf test regressions, or drift in the series in question, can
not be rejected; the associated probabilities given in Table 1 are therefore
from the standard normal distribution. In the other half of the cases, the
existence of a constant and trend is rejected so the probabilities given are
from MacKinnon (1996).

These results generally seem to suggest that most series are I(1). The
performance of the kpss test, which has as it null hypothesis that the series
is stationary, is strange for the Ireland-United Kingdom data as the test
does not reject this null in three of the six cases. Also, it is interesting that
the traditional adf test rejects the unit root hypothesis for one of the real
exchange rates, whereas the ‘more powerful’ np test fails to reject for both
series.

Table 2 gives the results of the simple fractional integration analysis.
For each series, four different estimates of d are given, together with their
estimated standard errors and associated fadf test statistic values, where
computed. The fadf test is only meaningful, and hence reported, if d � 1,
when the probabilities to be applied to the test statistics are the standard
normal ones. The results are interesting and would seem to imply that the
only series that is likely to be unambiguously fractionally integrated is Irish
interest rates. While all the estimates of d for the nominal exchange rate
between Ireland and the United Kingdom are less than one, the fadf test
fails to reject the null hypothesis of a unit root. For all other series, the
estimates of d gave conflicting values, although the suggestion is of a unit
root in the Ireland-United Kingdom real exchange rate. The fadf test only
gave strong evidence of fractional integration in the case of the Ireland-
Germany nominal and real exchange rates when the gph and gsp estimates
of d are used.

6.2 Cointegration analysis

The results of applying the standard Engle-Granger analysis in the context
of explanatory model (18) are given in tables 3 and 4. Table 3 reports the
findings of the levels analysis and in all cases both the traditional adf test
on residuals (augmented Engle-Granger test) and the Ng-Perron test fail to
reject the null hypothesis that the residuals have a unit root. The kpss test
also rejects the null of stationary residuals in all but one case. Therefore,
treating the variables as I(1), it seems that cointegration of the nominal
exchange rate, price levels and interest rates is overwhelmingly rejected for
both the Ireland-United Kingdom and the Ireland-Germany data.

Table 4 gives the results of trying to estimate parsimonious error cor-
rection models, using the first lag of the residuals from the corresponding

7All tables are in the Appendix.
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levels model as the error correction term in each of the two cases. While the
coefficients of the error correction terms have the ‘right’ sign, the t-ratios are
small in absolute value, confirming the conclusion about the lack of cointe-
gration. Dropping the insignificant constant terms has a minimal effect on
the results.

Table 5 summarises the Johansen analysis of the data, while more de-
tailed results are given in tables 6, 7, 8 and 9. Table 6 shows evidence of
one cointegrating vector in the Ireland-Germany case, when interest rates
are excluded from the equation. Importantly, this result is overturned by
the trace test when Johansen’s small sample correction to that test is ap-
plied. However, when interest rates are included, one cointegrating vector
is suggested whether or not the small sample correction is used, as shown
in Table 7. In this case, the trace and maximal eigenvalue tests concur.
Tables 8 and 9 present the results for the Ireland-United Kingdom relation-
ship. As with the previous case, the finding of one cointegrating vector in
the specification without interest rates is overturned by the adjusted trace
test. In contrast, two vectors are suggested when the interest rates are in-
cluded, and this result is unaffected by the small sample correction factor,
which strangely is less than 1.

Taken together, the results so far are rather mixed and indicate that
there is little evidence of cointegration in a traditional ppp setting, but that
the introduction of interest rates appears to be significant. Overall, as in
previous studies, this attempt to place the ppp analysis of Irish data in a
cointegrating framework is not entirely satisfactory. We therefore turn to
the results from the alternative nonlinear methodologies.

6.3 Nonlinearity tests

Tables 10 and 11 give the results of the various nonlinearity tests. In all
tests, the null hypothesis is that the model/series is linear. For the reset

test, both the F and LR variants are given. For the star nonlinearity test,
an F -test version is used, with F being the test statistic for H0 and F4, F3
and F2 being, respectively, the test statistics for the hypotheses H04, H03

and H02, specified in Section 5. The aic suggested a lag length of three for
the star test in the case of the Ireland-Germany exchange rate and a lag
length of two for the Ireland-United Kingdom case. The sic suggested a lag
length of one in both cases.

As can be seen from Table 10, the reset test and the four random field
based tests emphatically reject linearity at the 5 per cent significance level
in the case of the Ireland-Germany model. For the Ireland-United Kingdom
model, however, there is a marked contrast between the findings from the
two test approaches, with the reset test failing to reject linearity but all of
the random field tests strongly rejecting it.

Table 11 contains similar, though opposite findings. The reset test,
star tests and random field based tests all suggest that the assumption
of linearity is adequate for the Ireland-United Kingdom real exchange rate
taken on its own; but whereas the random field tests overwhelmingly support
linearity of the Ireland-Germany real exchange rate, the star test based on
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the use of three lags gives some indications of nonlinearity and the reset

test rejects linearity very strongly. It is difficult to explain these conflicting
outcomes in tables 10 and 11, especially in the absence of information on
the relative power of the different types of test.8

6.4 Random field estimation

Given that the bulk of the results in Table 10 suggest that the linear equa-
tion used in the analysis of ppp is not an appropriate specification, interest
focuses on the results of the nonlinear estimation of the random field re-
gression. These are given in Table 12. Convergence was achieved after 36
iterations in the case of both variants of the Ireland-Germany model, and af-
ter 42 and 19 iterations in the case of the basic and interest rate augmented
Ireland-United Kingdom equations, respectively. Interestingly, in the case
of both country pairings, the standard model and the augmented model
exhibit nonlinearity with respect to the two price variables, the price coef-
ficients in the nonlinear component of the models being highly significant.
However, in the augmented Ireland-Germany model, the German interest
rate is nonlinearly significant, while in the Ireland-United Kingdom model
it is the Irish interest rate that appears to have a significantly nonlinear
influence on the nominal exchange rate. Graphical inspection of cross-plots
of the data suggests that a number of regime shifts may be responsible for
these findings, though the choice of appropriate specifications and mod-
elling strategies remains problematical, particularly in the Ireland-United
Kingdom case. The data do not suggest an obvious approach, nor is there
a theoretical framework within which to work.

Most strikingly, perhaps, is the fact that when nonlinearity is modelled
by means of a random field, the coefficients on the domestic and foreign
prices in the specifications with and without interest rates, are not statis-
tically significantly different from their -1 and 1 values under purchasing
power parity theory. This finding contrasts with the findings in the earlier
Irish studies by, for example, Thom (1989) and Wright (1994), both of whom
report cointegrating vectors, corresponding to the vector of variables st, pt

and p∗t , that are markedly different from (1, -1, 1).

7 Conclusions

This paper has explored the well-known concept of purchasing power parity
between Ireland and Germany and Ireland and the United Kingdom, using
a number of recent econometric methods concerning fractional integration,
smooth transition autoregression, and random field regression. The theo-
retical background to purchasing power parity has been sketched, as has
the particular approach to fractionality offered by the fractional augmented
Dickey-Fuller test of Dolado, et al. (2002) and the approach to nonlinear

8In particular, no results appear to be available on the power of the reset test relative
to random field based LM tests for nonlinearity. This is a subject of ongoing research and
the findings will be presented in a forthcoming paper.
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inference suggested by Hamilton (2001). The findings reported have illus-
trated the potential difficulties inherent in placing the study of purchasing
power parity in the I(1)/I(0) econometric framework, difficulties that were
implicit in the very mixed results of several of the earlier studies of Irish
purchasing power parity that employed the Engle-Granger and Johansen
cointegration approaches.

As mentioned in the earlier work, the difficulties might relate to the low
power of unit root tests; see Wright (1994, p. 275). We have suggested they
might also relate to fractional integration of the processes generating the
series used. However, our results have shown that, in the cases examined,
this possibility is unlikely and that difficulties can not be overcome solely
by moving to a fractional integration framework.

Another possibility is that the processes in question may be station-
ary but parametrically unstable or nonlinear. As is well known, in such a
situation, standard unit root tests are not likely to reject the null hypoth-
esis of a unit root and cointegration analysis may be adopted mistakenly.
It is interesting to note that Thom (1989, p. 162) reported some evidence
of parameter instability and that Lane and Milesi-Ferretti (2002) chose to
view the Irish long-run real exchange rate as time varying; but neither of
these studies attempted to grapple with this problem in the ppp framework.
Our results provide further strong evidence of nonlinearity. Moreover, if the
nonlinearity is modelled using a random field regression, they show, impor-
tantly, that the Irish experience vis-à-vis Germany and the United Kingdom
accords well with purchasing power parity theory.
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A Appendix

A.1 Tables

Table 1: Unit Root Tests

Variables ADF P -value No. of Lags KPSS† NP†

Ireland & Germany

Nominal exchange rate -1.119 0.266 7 Yes No
Irish price level -2.155 0.034 4 Yes No
German price level -1.933 0.056 2 Yes No

Irish interest rate -1.085 0.250‡ 2 Yes* No*

German interest rate -0.936 0.309‡ 1 Yes No
Real Exchange Rate -3.543 0.00 2 Yes No

Ireland & United Kingdom

Nominal exchange rate -1.221 0.203‡ 0 No No
Irish price level -2.155 0.034 4 Yes No
UK price level -1.722 0.088 8 Yes No

Irish interest rate -1.085 0.250‡ 2 Yes* No*

UK interest rate -0.645 0.436‡ 10 No No

Real Exchange Rate -1.103 0.24‡ 2 No No

†Yes - significant at 5 per cent level. No - not significant at 5 per cent level.
‡Trend and constant not included. MacKinnon (1996) p-values used.
* Not significant at 1 per cent level.
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Table 2: Fractional Integration Analysis

Variables EML NLS GPH GSP

fadf

Common Series

1.46
(0.04)

1.50
(0.07)

1.01
(0.11)

0.89
(0.07)Irish Price Level

- - - 4.5
0.79
(0.10)

0.78
(0.10)

0.97
(0.10)

0.80
(0.06)Irish Interest Rates

-3.22 -3.21 -3.35 -3.23

Ireland & Germany

1.49
(0.14)

1.89
(0.10)

0.94
(0.11)

0.82
(0.07)Nominal Exchange Rate

- - -5.48 -5.51
1.46
(0.05)

1.57
(0.09)

1.02
(0.11)

0.92
(0.07)German Price Level

- - - 2.89
0.69
(0.24)

0.65†
(0.23)

1.12
(0.11)

1.03
(0.07)German Interest Rates

-1.49 -1.48 - -
1.41
(0.08)

1.48
(0.08)

0.98
(0.11)

0.85
(0.07)Real Exchange Rate

- - -5.05 -5.12

Ireland & United Kingdom

0.95
(0.09)

0.95
(0.09)

0.88
(0.11)

0.91
(0.07)Nominal Exchange Rate

-1.60 -1.60 -1.608 -1.60
1.48
(0.02)

1.55
(0.06)

0.99
(0.11)

0.87
(0.07)UK Price Level

- - 5.03 4.69
1.07
(0.09)

1.08
(0.10)

1.00
(0.11)

0.94
(0.07)UK Interest Rates

- - - -2.53
1.07
(0.09)

1.08
(0.09)

1.15
(0.11)

0.97
(0.07)Real Exchange Rate

- - - -1.09

†Trend and constant not included. McKinnon (1996) p-values used.
- Indicates fadf test not applicable.
Note: standard errors in parentheses.
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Table 3: I(1)/I(0) Levels Regression Analysis

Variables Ireland & Germany Ireland & United Kingdom

Constant 2.854
(0.549)

1.804
(0.575)

0.859
(0.108)

0.833
(0.108)

Price Levels

Irish −0.568
(0.083)

−0.672
(0.081)

−0.875
(0.111)

−1.029
(0.123)

Foreign 0.007
(0.200)

0.329
(0.203)

0.670
(0.095)

0.825
(0.110)

Interest Rates

Irish 0.005
(0.002)

0.007
(0.003)

Foreign 0.002
(0.003)

−0.003
(0.003)

Augmented Engle-Granger
(critical value)

−2.475
(−3.817)

−2.835
(−4.5398)

−2.653
(−3.8172)

−2.728
(−4.540)

Ng-Perron
† No No No No

KPSS† No Yes‡ Yes‡ Yes‡

†Yes - significant at 5 per cent level. No - not significant at 5 per cent level.
‡Significant at 5 per cent level but not the 1 per cent level.
Note: standard errors in parentheses.

Table 4: Error Correction Analysis

Variables Ireland & Germany Ireland & United Kingdom

Constant −0.004
(−0.003)

−0.004
(−0.003)

0.004
(0.005)

0.001
(0.004)

∆ Price Levels

Irish −0.686
(0.157)

−0.667
(0.164)

−1.105
(0.282)

−1.020
(0.284)

Foreign 1.021
(0.428)

0.927
(0.502)

0.831
(0.361)

0.715
(0.357)

∆ Interest Rates

Irish 0.0004
(0.001)

0.005
(0.001)

Foreign 0.001
(0.004)

0.00006
(0.003)

ECM −0.108
(0.039)

−0.107
(0.040)

−0.133
(0.049)

−0.124
(0.052)

Note: standard errors in parentheses.
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Table 5: Johansen’s Cointegration Tests Summary

no inpts rest’d inpts unrest’d inpts unrest’d inpts unrest’d inpts
Test Type

no trends no trends no trends rest’d trends unrest’d trends

Ireland & Germany

excluding interest rates

Trace 1 1 1 0 0
Max-Eig 1 1 1 0 0

Ireland & Germany

including interest rates

Trace 2 2 2 1 1
Max-Eig 2 2 1 1 1

Ireland & United Kingdom

excluding interest rates

Trace 1 1 1 1 1
Max-Eig 1 1 1 1 0

Ireland & United Kingdom

including interest rates

Trace 2 2 2 2 3
Max-Eig 0 1 1 2 1

Note: 0.05 per cent critical values based on Osterwald-Lenum (1992).
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Table 6: Johansen Results for Ireland & Germany excluding Interest
Rates

Cointegration Rank Test (Trace)†

Hypotheses Trace 0.05 Critical 0.10 Critical Modified 0.05
Statistic Value Value Critical Value

r = 0 r ≥ 1 39.203 34.870 31.930 45.680
r ≤ 1 r ≥ 2 13.347 20.180 17.880 -
r ≤ 2 r = 3 5.903 9.160 7.530 -

Cointegration Rank Test (Maximum Eigenvalue)†

Hypotheses Maximum Eigenvalue 0.05 Critical 0.10 Critical
Statistic Value Value

r = 0 r = 1 25.856 22.040 19.860
r ≤ 1 r = 2 7.444 15.870 13.810
r ≤ 2 r = 3 5.903 9.160 7.530

†Cointegration with restricted intercepts and no trends in the VAR.
Note: The correction factor is 1.310.
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Table 7: Johansen Results for Ireland & Germany including Interest
Rates

Cointegration Rank Test (Trace)†

Hypotheses Trace 0.05 Critical 0.10 Critical Modified 0.05
Statistic Value Value Critical Value

r = 0 r ≥ 1 111.587 87.170 82.880 98.328
r ≤ 1 r ≥ 2 57.298 63.000 59.160 -
r ≤ 2 r ≥ 3 31.448 42.340 39.340 -
r ≤ 3 r ≥ 4 15.809 25.770 23.080 -
r ≤ 4 r = 5 6.057 12.390 10.550 -

Cointegration Rank Test (Maximum Eigenvalue)†

Hypotheses Maximum Eigenvalue 0.05 Critical 0.10 Critical
Statistic Value Value

r = 0 r = 1 54.290 37.860 35.040
r ≤ 1 r = 2 25.850 31.790 29.130
r ≤ 2 r = 3 15.639 25.420 23.100
r ≤ 3 r = 4 9.751 19.220 17.180
r ≤ 4 r = 5 6.057 12.390 10.550

†Cointegration with unrestricted intercepts and restricted trends in the VAR.
Note: The correction factor is 1.128.
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Table 8: Johansen Results for Ireland & UK excluding Interest Rates

Cointegration Rank Test (Trace)†

Hypotheses Trace 0.05 Critical 0.10 Critical Modified 0.05
Statistic Value Value Critical Value

r = 0 r ≥ 1 57.532 42.340 39.340 70.030
r ≤ 1 r ≥ 2 21.695 25.770 23.080 -
r ≤ 2 r = 3 4.788 12.390 10.550 -

Cointegration Rank Test (Maximum Eigenvalue)†

Hypotheses Maximum Eigenvalue 0.05 Critical 0.10 Critical
Statistic Value Value

r = 0 r = 1 35.838 25.420 23.100
r ≤ 1 r = 2 16.907 19.220 17.180
r ≤ 2 r = 3 4.788 12.390 10.550

†Cointegration with unrestricted intercepts and restricted trends in the VAR.
Note: The correction factor is 1.654.
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Table 9: Johansen Results for Ireland & UK including Interest Rates

Cointegration Rank Test (Trace)†

Hypotheses Trace 0.05 Critical 0.10 Critical Modified 0.05
Statistic Value Value Critical Value

r = 0 r ≥ 1 127.997 87.170 82.880 85.427
r ≤ 1 r ≥ 2 77.194 63.000 59.160 61.740
r ≤ 2 r ≥ 3 41.665 42.340 39.340 41.493
r ≤ 3 r ≥ 4 21.103 25.770 23.080 -
r ≤ 4 r = 5 4.707 12.390 10.550 -

Cointegration Rank Test (Maximum Eigenvalue)†

Hypotheses Maximum Eigenvalue 0.05 Critical 0.10 Critical
Statistic Value Value

r = 0 r = 1 50.803 37.860 35.040
r ≤ 1 r = 2 35.530 31.790 29.130
r ≤ 2 r = 3 20.562 25.420 23.100
r ≤ 3 r = 4 16.395 19.220 17.180
r ≤ 4 r = 5 4.707 12.390 10.550

†Cointegration with unrestricted intercepts and restricted trends in the VAR.
Note: The correction factor is 0.980.
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Table 10: Nonlinearity Tests - Causal Models

Test Test P -value Bootstrap Test P -value Bootstrap
Statistic p-value Statistic p-value

Ireland & Germany Ireland & United Kingdom

Reset

excluding interest rates

F 35.04 0.000 0.948 0.431
LR 77.646 0.000 3.969 0.414

including interest rates

F 24.474 0.000 0.882 0.477
LR 60.085 0.000 3.765 0.439

Random Field

excluding interest rates

Hamilton 575.388 0.000 0.001 648.928 0.000 0.001
Lamba A 324.321 0.000 0.001 151.160 0.000 0.001
Lamba E 233.907 0.000 0.001 233.152 0.000 0.001
g-test 11.380 0.044 0.001 104.661 0.000 0.001

including interest rates

Hamilton 179.66 0.000 0.001 205.475 0.000 0.001
Lamba A 224.382 0.000 0.001 545.731 0.000 0.001
Lamba E 180.758 0.000 0.001 161.323 0.000 0.001
g-test 156.695 0.000 0.001 211.304 0.000 0.001

28



Table 11: Nonlinearity Tests - Real Exchange Rates

Test Test P -value Bootstrap Test P -value Bootstrap
Statistic p-value Statistic p-value

Ireland & Germany Ireland & United Kingdom

Reset

F 8.136 0.000 1.043 0.376
LR 23.606 0.000 3.969 0.349

STR lag length 1

F 0.236 0.576
F4 0.379 0.952
F3 0.121 0.169
F2 0.303 0.764

lag length 3 lag length 2

F 0.010 0.207
F4 0.054 0.108
F3 0.010 0.236
F2 0.039 0.591

Random Field

Hamilton 2.410 0.121 0.058 0.187 0.665 0.653
Lamba A 4.481 0.923 0.369 6.721 0.751 0.394
Lamba E 0.035 0.852 0.922 1.056 0.304 0.562
g-test 4.551 0.871 0.367 2.847 0.970 0.458
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Table 12: Hamilton analysis - Ireland, Germany, and UK

Ireland & Germany Ireland & United Kingdom

Estimates

Linear
c 0.332

(1.488)
0.769
(1.121)

c 1.176
(0.751)

0.907
(0.213)

pIre
t −0.896

(0.191)
−0.836
(0.152)

pIre
t −1.439

(0.308)
−1.093
(0.239)

pGer
t 0.892

(0.502)
0.724
(0.390)

pUK
t 1.164

(0.320)
0.882
(0.218)

iIre
t −0.0004

(0.002)
iIre
t 0.009

(0.004)

iGer
t 0.007

(0.005)
iUK
t −0.009

(0.004)

Nonlinear
σ 0.019

(0.002)
0.010
(0.004)

σ 0.021
(0.003)

0.009
(0.004)

ζ 3.987
(0.817)

5.859
(2.551)

ζ 9.572
(2.109)

8.148
(4.368)

pIre
t 4.265

(0.375)
4.609
(1.103)

pIre
t 0.480

(0.116)
2.777
(1.214)

pGer
t 11.068

(0.733)
16.971
(3.021)

pUK
t −1.864

(0.044)
10.454
(1.846)

iIre
t −0.032

(0.023)
iIre
t 0.118

(0.039)

iGer
t −0.146

(0.052)
iUK
t −2.26E−7

(0.040)

Note: standard errors in parentheses.
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