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Abstract

This paper presents a general framework for analysing stochastic stability

in models with evolution at two levels. Under certain conditions the theory of

nearly-complete decomposability can be used to disentangle these two levels.

They can then be studied separately and the equilibrium of one can be used to

obtain the equilibrium of the other. This gives an approximation of the equi-

librium of the combined dynamics. This approached is applied to a model of

conjectural variation and imitation in Cournot oligopoly. If behavioural change

takes place infrequently, the Walrasian equilibrium is the unique stochastically

stable outcome. As a corollary, it is indicated that smaller industries are more

competitive than larger ones.
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1 Introduction

In recent years, many papers and books have used the concept of stochastic stabil-

ity to explain equilibrium selection in games. Most of these models follow the same

structure.1 One starts by modelling a particular kind of dynamic behaviour in dis-

crete time that evolves according to a Markov chain. This gives the pure dynamics.

One can think, for example, of symmetric Cournot oligopoly where at each point in

time firms imitate the output of the firm with highest profits in the previous period.

Vega–Redondo (1997) shows that this dynamics has numerous equilibria (absorbing

states), namely all those states where all firms produce the same quantity (the so-

called monomorphic states). In order to select between all these equilibria, the pure

dynamics is then perturbed by random noise, leading to the perturbed dynamics. In

the oligopoly example, one assumes that with a certain small probability each firm

chooses a random quantity. The stochastically stable states are those states that get

positive probability mass in the limit distribution2 as the random noise component

vanishes. In the oligopoly example Vega–Redondo (1997) shows that the Walrasian

equilibrium is the unique stochastically stable state, thus giving an evolutionary

underpinning of Walrasian behaviour.

Stochastic stability has been analysed to study, for example, evolution in biology

(e.g. Foster and Young (1990)), the evolution of conventions (e.g. Young (1993)),

equilibrium selection in non-cooperative games (e.g. Kandori et al. (1993)), and a

plethora of other fields. In oligopoly theory, stochastic stability has been applied

in the seminal Vega–Redondo (1997) as outlined above. This model has been ex-

tended to study, for example, entry and exit (Alós-Ferrer et al. (1999)), Bertrand

competition (Alós-Ferrer et al. (2000)) the comparison between Cournot and Wal-

rasian equilibrium (Alós-Ferrer (2004)), and the interaction between different types

of behaviour (e.g. Schipper (2003) and Kaarbøe and Tieman (1999)).

One crucial assumption in all these models is that agents may change their de-

cisions, but never the behaviour that leads to these decisions. In Vega–Redondo

(1997), for example, all firms are profit imitators. Even if there are multiple be-

havioural rules present in the population (as in e.g. Schipper (2003)), players can-

not change their behaviour. This is a very restrictive assumption. One would like

to be able to study models where agents can choose between different behavioural

rules.3 In a repeated non-cooperative game, this would lead to two levels of dynam-

1For a textbook exposition see, for example, Fudenberg and Levine (1998).
2The limit distribution is also called the “invariant probability measure”, or “equilibrium dis-

tribution”. The latter term can be confusing as the limit distribution need not correspond to an

equilibrium of the underlying game.
3In a static context this is studied in the literature on indirect evolution. See, for example, Güth
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ics. Given a configuration of behavioural rules for all players there is a dynamics of

strategy choices, the strategy dynamics. At a higher level of aggregation, given the

results of behavioural rules, players switch between different behavioural rules, the

behavioural dynamics. The question then is how the two levels influence each other

and what behaviour and strategy combinations result in stochastically stable states.

A major problem with such an analysis is that the resulting Markov chain de-

scribing the dynamics becomes very complicated. This paper discusses a very intu-

itive way of disentangling the two types of dynamics and, hence, obtaining a good

approximation of the limit distribution of the original Markov chain. This approach

is basically an application of the theory of nearly-complete decomposability as de-

veloped by Ando and Fisher (1963), Simon and Ando (1961), and Courtois (1977).

Originally, this theory was developed to aggregate over large dynamic systems in

the presence of limited computational power. The main idea is that under certain

conditions one can study the two levels of dynamics separately. Intuitively, this

means that one uses the limit distribution of the strategy dynamics to obtain the

limit distribution of the behavioural dynamics. The theory of nearly-completely de-

composable systems provides an upper bound on the interaction between the two

dynamics below which the latter limit distribution is a good approximation of the

limit distribution of the original Markov chain.

To illustrate the way this theory can be used, we study an extension to Vega–

Redondo (1997). We consider a Cournot oligopoly with a finite number of identical

firms. The strategy dynamics is driven by best responses given conjectural vari-

ations. For each configuration of conjectural variations this dynamics leads to a

different equilibrium. In particular, there are configurations that lead to the Wal-

rasian, Cournot-Nash, and Cartel equilibria. At the behavioural level it is assumed

that firms imitate the behaviour (i.e. the conjectural variation) of the firm with

the highest profit. It is shown that if behavioural change does not take place too

frequently (a notion made precise below), Walrasian behaviour is (approximately)

the unique stochastically stable state. This result reaffirms the strength of the

Walrasian idea in competitive markets. A crucial assumption, however, is that be-

havioural change takes place at a sufficiently low rate. The upper bound on this

rate is decreasing in the number of firms. If behavioural change takes place more

frequently, the support of the limit distribution may consist of more elements than

just the Walrasian equilibrium, indicating that larger industries may inherently be

less competitive than smaller industries.

The remainder of the paper is organised as follows. In Section 2 the general

and Yaari (1992), or Possajennikov (2000) for an application to oligopoly theory.
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framework is discussed. The theory of nearly-completely decomposable systems

is described Section 3. In Section 4 we develop a model of Cournot oligopoly to

illustrate the theory and Section 5 concludes.

2 A General Model of Multi-level Evolution

Let
(

In, (Si)i∈In , (ui)i∈In

)

be a game in normal form. Let S =
∏

i∈In
Si. This game

is infinitely repeated. At every time t = 0, 1, 2, . . . , the configuration of strategy

choices is denoted by st = (sit)i∈In , where sit ∈ Si is the strategy chosen by player

i at time t. It is assumed that every player i ∈ In can choose from a finite set Bi of

behavioural rules. A behavioural rule is a correspondence Bi : S → Si, with typical

element sit = Bi,t−1(st−1), where Bi,t−1 denotes the behavioural rule that player

i ∈ In chose at time t − 1.4 That is, Bi,t−1(st−1) describes the strategy choice of

player i at time t, given the strategy choices of all players and player i’s choice of

behavioural rule at time t− 1.5 Furthermore, the fact that strategy choice at time t

is influenced by behavioural choice at time t − 1 suggests that strategy choices are

made at the beginning of each period, whereas behavioural choices are made at the

end.

It is assumed that players adapt their strategy choice with probability p ∈ (0, 1)

every period. So, with probability p, sit ∈ Bi,t−1(st−1), and with probability 1− p,

sit = si,t−1. If Bi,t−1(st−1) contains more than one element, player i chooses an

element at random according to a probability measure, ηi, with full support. The

aforementioned dynamics describe the pure strategy dynamics.

The actual strategy choice can be influenced by several aspects. For example, a

player can make a mistake and choose another strategy than her behavioural rule

prescribes. Another possibility is that a player experiments and consciously chooses

another strategy. Finally, a player may be replaced by another player who has the

same behaviour, but chooses a different strategy at first. Since these effects are

outside the model, they are treated as stochastic perturbations. To model these

perturbations at the strategy level, it is assumed that with probability ε > 0 a

player chooses an element from S randomly according to a probability distribution,

νi, with full support.

4This formulation should not necessarily be interpreted as a player choosing a behavioural rule

out of free will. The possibility that choice of behaviour is determined by, for example, genetics or

evolutionary forces is not a priori excluded.
5This formulation does not explicitly include memory longer than one period. Models can,

however, relatively easily be transformed to include finite memory. See, for example, Alós-Ferrer

et al. (1999).
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Let s(k), k = 1, . . . ,m, and BI , I = 1, . . . , N , denote the k-th and I-th per-

mutation of S and B =
∏

i∈In
Bi, respectively. Then, pure strategy dynamics and

perturbations, together, lead to a Markov chain on S with transition matrixM ε
I (k, l),

a typical element of which is

M ε
I (k, l) =

∏

i∈In

{

(1− ε)
[

p11(
s(l)i∈BIi

(

s(k)−i

)ηi(s(l)i)

+ (1− p)11(
s(k)i=s(l)i

)

]

+ ενi
(

s(l)i
)

}

,

where 11(·) denotes the indicator function and the part between square brackets gives

the transition probabilities for the pure strategy dynamics.

The behavioural dynamics takes place at the end of period t, when each player i

gets the opportunity to revise its behaviour with probability 0 < p̃ < 1. Behavioural

change can be thought of as a conscious or non-conscious change. In the case of

conscious change one could think that once in a while a player analyses her past

performance and assesses the payoffs her behaviour yield by comparing with the

payoffs of the other players. The importance of relative payoffs has already been

stressed by Alchian (1950). It is assumed that each player knows the model and

can observe the choices of other players and can, therefore, deduce the behaviour

of the other players as well. She can then change her behaviour accordingly. Since

deriving the other players’ behaviour requires more cognitive effort than simply

following a behavioural rule in choosing a strategy, it seems reasonable to assume

that players change their behaviour less often than their strategy choices which

could be reflected in assuming that p̃ < p. Non-conscious behavioural change can,

for example, be thought of as genetic change, where “weaker genes” are replaced

by “stronger” genes, leading to a Darwinian survival of the fittest. Again, it seems

reasonable to assume that behavioural change takes place at a lower frequency than

strategy change.

For each player i ∈ In, behavioural change is governed by a correspondence

B̃i : B × S → Bi. That is, given the strategy choices (s1,t−1, . . . , sn,t−1) ∈ S and

the behavioural rules (B1,t−1, . . . , Bn,t−1) ∈ B, player i chooses a behavioural rule

at time t such that

Bit ∈ B̃i

(

s1,t−1, . . . , sn,t−1;B1,t−1, . . . , Bn,t−1

)

.

If B̃i(·) does not consist of a unique element, player i chooses any element from B̃(·)

using a probability measure η̃i(·) with full support.

This dynamic process constitutes the pure behavioural dynamics. Just as in

5



the strategy dynamics, random perturbations are added.6 So, each player chooses

with probability ε̃ > 0 any behavioural rule using a probability measure ν̃i(·) with

full support. For each k ∈ {1, . . . ,m} and corresponding strategy vector s(k), the

behavioural dynamics gives rise to a Markov chain on B with transition matrix λε̃k,

a typical element of which equals

λε̃k(I, J) =
∏

i∈In

{

(1− ε̃)
[

p̃11(
BJ
i
∈B̃i(BI ,s(k))

)η̃i(B
J
i )

+ (1− p̃)11(
BJ
i
=BI

i
)
)

]

+ ε̃ν̃i
(

BJ
i )
)

}

,

(1)

where the part between square brackets gives the transition probabilities for the

pure behavioural dynamics.

The combined strategy and behavioural dynamics yield a Markov chain on S×B

with transition matrix Qε,ε̃. For future convenience, it is assumed that entries in this

transition matrix are grouped according to the behavioural index. So, the k-th row

in Qε,ε̃ consists of the transition probabilities from the state with behavioural rules

B1 and strategies s(k). Similarly, the m(I − 1) + k-th row contains the transition

probabilities from the state with behavioural rules BI and strategies s(k). A typical

element of Qε,ε̃ is given by

Qε,ε̃(kI , lJ) = M ε
I (k, l)λ

ε̃
k(I, J),

which should be read as the transition probability form the state with behavioural

rules BI and strategies s(k) to the state with behavioural rules BJ and strategies

s(l). Note that, for every ε > 0 and every ε̃ > 0, this Markov chain is ergodic (i.e.

Qε,ε̃ is irreducible) and, hence, has a unique limit distribution.

Consider the Markov chain with transition matrix

Q = lim
ε̃↓0

lim
ε↓0

Qε,ε̃.

This is the transition matrix of the Markov chain that results after the stochastic

perturbations at the strategy and behavioural level have converged to zero, respec-

tively. The order of taking limits is essential to the analysis. The stochastically

stable states are defined to be those states that have positive probability mass in

the limit distribution, µ(·), of Q. The dynamics in Q is complicated due to the in-

teraction between the strategy and the behavioural levels. Therefore, the techniques

developed in Freidlin and Wentzell (1984), which are usually used to determine the

stochastically stable state will, in general, be hard to apply.

6In the case of non-conscious behavioural change, these perturbations can be thought of as

mutations.
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One way of proceeding is to decompose the Markov chain Q. Let for every

I = 1, . . . , N , Q∗I = limε↓0M
ε
I . The standard techniques as applied in most of the

literature (cf. Young (1998)) can be used to the unique limit distribution of Q∗I ,

denoted by µI(·). Then, construct a Markov chain on B, Q̃, where µI(·) is used

to aggregate over the strategy dynamics. That is the transition probabilities in Q̃

are based on the assumption that the strategy dynamics has settled in equilibrium.

Standard techniques can then be used to obtain the limit distribution, µ̃(·) of Q̃.

The theory of nearly-complete decomposability gives conditions on when µ̃(·) is a

good approximation of the measure of interest, µ(·).

3 Nearly-complete Decomposability

Intuitively, a nearly-completely decomposable system is a Markov chain where the

matrix of transition probabilities can be divided into blocks such that the interaction

between blocks is small relative to interaction within blocks. This section presents

the formal theory.7 In the remainder, let Q be an n×n irreducible stochastic matrix,

representing, for example, the transition matrix of an ergodic Markov chain. The

dynamic process (yt)t∈IN, where yt ∈ IRn for all t ∈ IN, is then given by

(yt+1)
> = (yt)

>Q. (2)

Note that Q can be written as follows:

Q = Q∗ + ζC, (3)

where Q∗ is of order n and given by

Q∗ =















Q∗1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 Q∗N















. (4)

The matrices Q∗I , I = 1, . . . , N , are irreducible stochastic matrices of order n(I).

Hence, n =
∑N

I=1 n(I). Therefore the sums of the rows of C are zero. We choose ζ

and C such that for all rows kI , I = 1, . . . , N , k = 1, . . . , n, it holds that

ζ
∑

J 6=I

n(J)
∑

l=1

CkI lJ =
∑

J 6=I

n(J)
∑

l=1

QkI lJ (5)

7The analysis closely follows Courtois (1977).
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and

ζ = max
kI

(

∑

J 6=I

n(J)
∑

l=1

QkI lJ

)

, (6)

where the kI denotes the k-th element in the I-th block. The parameter ζ is called

the maximum degree of coupling between subsystems Q∗I .

It is assumed that all eigenvalues of Q and Q∗ are distinct. Then the spectral

composition8 of the t-step probabilities – Qt – can be written as

Qt =
N
∑

I=1

n(I)
∑

k=1

λt(kI)Z(kI), (7)

where

Z(kI) = s(kI)
−1v(kI)v(kI)

>,

λ(kI) is the kI -th maximal eigenvalue in absolute value of Q, v(kI) is the corre-

sponding eigenvector normalised to one using the vector norm ‖ ·‖1, and s(kI) is the

condition number s(kI) = v(kI)
>v(kI). Since Q is a stochastic matrix, the Perron-

Frobenius theorem gives that the maximal eigenvalue of Q equals 1. Therefore, (7)

can be rewritten as

Qt = Z(11) +
N
∑

I=2

λt(1I)Z(1I) +
N
∑

I=1

n(I)
∑

k=2

λt(kI)Z(kI). (8)

If one defines for each matrix Q∗I in a similar way Z∗(kI), s
∗(kI), λ

∗(kI), and v∗(kI),

e.g. λ∗(kI) is the k-th maximal eigenvalue in absolute value of Q∗I , then one can find

a similar spectral decomposition for Q∗, i.e.

(Q∗)t =
N
∑

I=1

Z∗(1I) +
N
∑

I=1

n(I)
∑

k=2

(λ∗)t(kI)Z
∗(kI), (9)

using the fact that v∗kI (1I) = n(I)−1 for all kI . The behaviour through time of yt

and y∗t , where the dynamics of (yt)t∈IN is described by (2) and the process (y∗t )t∈IN

is defined by

(y∗t+1)
> = (y∗t )

>Q∗,

are, therefore, also specified by (8) and (9). The behaviour of yt can be seen as long-

run behaviour whereas y∗t describes short-run behaviour. The comparison between

both processes follows from two theorems as stated by Simon and Ando (1961).

8See, for example, Lay (1994, Section 8.1).
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Theorem 1 For an arbitrary positive real number ξ, there exists a number ζξ such

that for ζ < ζξ,

max
p,q
|Zpq(kI)− Z∗pq(kI)| < ξ,

for any 2 ≤ k ≤ n(I), 1 ≤ I ≤ N , where 1 ≤ p, q ≤ n.

Theorem 2 For an arbitrary positive real number ω, there exists a number ζω such

that for ζ < ζω,

max
k,l
|ZkI lJ (kI)− v∗lJ (1J)αIJ(1K)| < ω,

for any 1 ≤ k ≤ n(I), 1 ≤ l ≤ n(J), 1 ≤ K, I, J ≤ N , and where αIJ(1K) is given

by

αIJ(1K) =

n(I)
∑

k=1

n(J)
∑

l=1

v∗kIzkI lJ (1K).

It can be shown that for all I = 1, . . . , N , λ(1I) is close to unity. Therefore λt(1I)

will also be close to unity for small t. Hence, the first two terms on the right-hand

side of (8) will not vary much for t < T2, for some T2 > 0. The first term of the right-

hand-side of (9) does not change at all. Hence, for t < T2 the behaviour through

time of yt and y∗t is determined by the last terms of Qt and (Q∗)t, respectively. Also,

if ζ → 0 it can be shown that λ(kI) → λ∗(kI) and from Theorem 1 it follows that

Z(kI) → Z∗(kI), for all k = 2, . . . , n(I) and I = 1, . . . , N . This means that for ζ

small and t < T2 the paths of yt and y∗t are very close.

The eigenvalues λ∗(kI) are strictly less than unity in absolute value for all k =

2, . . . , n(I), and I = 1, . . . , N . For any positive real number ξ1 we can therefore

define a smallest time T ∗1 such that

max
1≤p,q≤n

∣

∣

∣

N
∑

I=1

n(I)
∑

k=2

(λ∗)t(kI)Z
∗
pq(kI)

∣

∣

∣
< ξ1 for t > T ∗1 .

Similarly, we can find a T1 such that

max
1≤p,q≤n

∣

∣

∣

N
∑

I=1

n(I)
∑

k=2

λt(kI)Zpq(kI)
∣

∣

∣
< ξ1 for t > T1.

Theorem 1 plus convergence of the eigenvalues with ζ then ensures that T1 → T ∗1 as

ζ → 0. We can always choose ζ such that T2 > T1. As long as ζ is not identical to

zero it holds that λ(1I) is not identical to unity for I = 2, . . . , N .9 Therefore, there

will be a time T3 > 0 such that for sufficiently small ξ3,

max
1≤p,q≤n

∣

∣

∣

N
∑

I=1

n(I)
∑

k=2

λt(1I)Zpq(1I)
∣

∣

∣
< ξ3 for t > T3.

9If ζ = 0, all blocks QI are irreducible and then we would have λ(1I) = λ∗(1I) = 1 for all I.
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This implies that for T2 < t < T3, the last term of Qt is negligible and the path of yt

is determined by the first two components of Qt. According to Theorem 2 it holds

that for any I and J the elements of Z(1K),

ZkI1J (1K), . . . , ZkI lJ (1K), . . . , ZkIn(J)J (1K),

depend essentially on I, J and l, and are almost independent of k. So, for any I

and J they are proportional to the elements of the eigenvector of Q∗J corresponding

to the largest eigenvalue. Since Q∗ is stochastic and irreducible, this eigenvector

corresponds to the limit distribution µ∗J of the Markov chain with transition matrix

Q∗J . Thus, for T2 < t < T3 the elements of the vector yt, (ylJ )t, will approximately

have a constant ratio that is similar to that of the elements of µ∗J . Finally, for t > T3

the behaviour of yt is almost completely determined by the first term of Qt. So, yt

evolves towards v(11), which corresponds to the limit distribution µ of the Markov

chain with transition matrix Q. Summarising, the dynamics of yt can be described

as follows.

1. Short-run dynamics: t < T1. The predominant terms in Qt and (Q∗)t are the

last ones. Hence, yt and y∗t evolve similarly.

2. Short-run equilibrium: T1 < t < T2. The last terms of Qt and (Q∗)t have

vanished while for all I, λt(1I) remains close to unity. A similar equilibrium

is therefore reached within each subsystem of Q and Q∗.

3. Long-run dynamics: T2 < t < T3. The predominant term in Qt is the second

one. The whole system moves to equilibrium, while the short-run equilibria in

the subsystems are approximately maintained.

4. Long-run equilibrium: t > T3. The first term of Qt dominates. Therefore, a

global equilibrium is attained.

The above theory implies that one can estimate µ(·) by calculating µ∗I for I =

1, . . . , N , and the invariant measure µ̃ of the process

(ỹt+1)
> = (ỹt)

>P, (10)

where (ỹI)t =
∑n(I)

k=1(ykI )t for all I = 1, . . . , N , and some transition matrix P . For

t > T2 we saw that
(ykI )t
(ỹI)t

≈ µ∗I,k. Hence, the probability of a transition from group

I to group J is given by

(pIJ)t+1 = (ỹI)
−1
t

n(I)
∑

k=1

(ykI )t

n(J)
∑

l=1

QkI lJ .
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For t > T2 this can be approximated by

(pIJ)t+1 ≈

n(I)
∑

k=1

µ∗I,k

n(J)
∑

l=1

QkI lJ ≡ pIJ . (11)

So, by taking P = [pIJ ], the process in (10) gives a good approximation for t > T2

of the entire process (yt)t∈IN.

Until now we have not been concerned by how large ζ can be. It was stated that

for T ∗1 < t < T2, the original system Q is in a short-run equilibrium close to the

equilibrium of the completely decomposable system Q∗. If this is to occur it must

hold that T ∗1 < T2. Every matrix Q can be written in the form of (3), but not for

all matrices it holds that T ∗1 < T2. Systems that satisfy the condition T ∗1 < T2 are

called nearly-completely decomposable systems (cf. Ando and Fisher (1963)). Since

T ∗1 is independent of ζ and T2 increases with ζ → 0, the condition is satisfied for ζ

sufficiently small.

The main results concerning nearly-complete decomposability are given in the

theorem below.

Theorem 3 (Courtois (1977)) Let Q be an irreducible stochastic matrix, with a

decomposition as given in (3)-(6). If

ζ < 1
2

[

1− max
I=1,...,N

|λ∗(2I)|
]

, (12)

then Q is nearly-completely decomposable. Furthermore, the limit distribution of the

Markov chain with transition matrix P , as defined in (11) gives an O(ζ) approxi-

mation of the limit distribution of Q.

4 An Application: Cournot Oligopoly with Conjectural

Variations and Imitation

In this section, an application of the theory of nearly-completely decomposable sys-

tems to stochastic stability with multi-level evolution is discussed. Let be given a

dynamic market for a homogeneous good with n firms, indexed by In = {1, 2, . . . , n}.

At each point in time, t ∈ IN, competition takes place in a Cournot fashion,

i.e. by means of quantity setting. Inverse demand is given by a smooth function

P : IR+ → IR+ satisfying P ′(·) < 0. The production technology is assumed to be

the same for each firm and is reflected by a smooth cost function C : IR+ → IR+,

satisfying C ′(·) > 0 and either C ′′(·) > 0 or C ′′(·) < 0. If at time t ∈ IN the vector

of quantities is given by q ∈ IRn
+, the profit for firm i ∈ In at time t is given by

π(qi, q−i) = P (qi +Q−i)qi − C(qi),
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where q−i = (qj)j 6=i and Q−i =
∑

j 6=i qj .

Each firm i ∈ In chooses quantities from a finite grid Γi. Define Γ =
∏

i∈In
Γi.

For further reference let q(k), k = 1, . . . ,m, be the k-th permutation of Γ. It is

assumed that in setting their quantities firms conjecture that their change in quantity

results in an immediate change in the total quantity provided by their competitors.

This can also be seen to reflect the firm’s conjecture of the competitiveness of the

market. Formally, firm i ∈ In conjectures a value for the partial derivative of Q−i

with respect to qi. Using this conjecture, the firm wants to maximise next period’s

profit. Hence, the firm is a myopic optimiser, which reflects its bounded rationality.

The first-order condition for profit maximisation of firm i reads

P ′(qi +Q−i)
(

1 +
∂Q−i

∂qi

)

qi + P (qi +Q−i)− C ′(qi) = 0. (13)

As can be seen from (13) we assume that there is only a first order conjecture effect.

Furthermore, we assume that this effect is linear. These assumptions add to the

firm’s bounded rationality.10

To facilitate further analysis, the conjectures are parameterised by a vector α ∈

IRn such that for all i ∈ In

(1 + αi)
n

2
= 1 +

∂Q−i

∂qi
.

Given a vector of conjectures an equilibrium for the market is given by q ∈ IRn
+ such

that for all i ∈ In the first-order condition (13) is satisfied. Note that if all firms

i ∈ In have the conjecture αi = −1, the equilibrium coincides with the Walrasian

equilibrium. Furthermore, if all firms have αi = 2−n
n or αi = 1, the equilibrium

coincides with the Cournot-Nash equilibrium or the cartel equilibrium, respectively.

Therefore, the conjectures αi = −1, αi = 2−n
n , and αi = 1 will be called the

Walrasian, Cournot-Nash, and cartel conjectures, respectively.

Each firm chooses its conjecture from a finite grid Λ on [−1, 1], where it is

assumed that Λ ⊃ {−1, 2−nn , 1}. The bounds of this finite grid represent the extreme

cases of full competition (α = −1) and cartel (α = 1). For further reference, let

α(I), I = 1, . . . , N , be the I-th permutation of Λn =
∏

i∈In
Λ.

This model is a special case of the general framework presented in Section 2.

The pure strategy dynamics is such that firm i ∈ In seeks to find qti ∈ Γi so as

to approximate as closely as possible the first-order condition (13). That is, qti ∈

10The first-order and linearity assumptions are also made throughout the static literature on

conjectural variations. This seems incompatible with the assumption of fully rational firms in these

models.
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Bi(q
t−1
−i ;αt−1

i ), where11 for q−i ∈
∏

j 6=i Γj and αi ∈ Λi,

B(q−i, αi) = argmin
q∈Γi

{∣

∣

∣
P ′(q +Q−i)(1 + αi)

n

2
q + P (q +Q−i)− C ′(q)

∣

∣

∣

}

.

The pure behavioural dynamics consists of firms imitating at time t the conjec-

ture of the firm(s) with the highest profit in period t− 1.12 Formally, firm i’s choice

αt
i is such that αt

i ∈ B̃(αt−1, qt), where for given α ∈ Λn and q ∈ Γ,

B̃(α, q) = argmax
γ∈Λ

{

∃j∈In : αj = γ, ∀k∈In : π(qj , q−j) ≥ π(qk, q−k)
}

.

The combined strategy and behavioural dynamics yield a Markov chain on Γ×Λn

with transition matrix Qε,ε̃. A typical element of Qε,ε̃ is given by

Qε,ε̃(kI , lJ) = M ε
I (k, l)λ

ε̃
k(I, J),

which should be read as the transition probability form the state with conjectures

α(I) and quantities q(k) to the state with conjectures α(J) and quantities q(l). We

want to determine the unique limit distribution, µ(·), of the Markov chain with

transition matrix

Q = lim
ε̃↓0

lim
ε↓0

Qε,ε̃.

First the strategy dynamics is studied. As before, for each I = 1, . . . , N , let Q∗I =

lim
ε↓0

M ε
I be the limit Markov chain when the perturbations in the strategy dynamics

vanish. Note that MI has a unique limit distribution, µI(·). To facilitate further

analysis it is assumed that for any vector of conjectures there is a unique equilibrium,

i.e. a unique vector of quantities that solves (13) for all firms. Furthermore, we

assume that this equilibrium is an element of the quantity grid Γ.

Assumption 1 For all α ∈ Λn there exists a unique qα ∈ Γ such that for all i ∈ In,

P ′(qαi +Qα
−i)(1 + αi)

n

2
qαi + P (qαi +Qα

−i)− C ′(qαi ) = 0.

Let the permutation on Γ that corresponds to qα be denoted by k(I), i.e. q(k(I)) =

qα. The following proposition states that for each vector of conjectures α(I) the

unique stochastically stable state of the strategy dynamics is given by qα(I).

Proposition 1 Let I ∈ {1, . . . , N} be given. Under Assumption 1, the unique limit

distribution µI(·) of the Markov chain with transition matrix Q∗I is such that

µI(qα(I)) = 1.

11From the definition of behavioural rules, αi is not an argument of Bi. We include it for

clarification.
12Here, imitation takes place at the behavioural level, not at the strategy level (as in, for example,

Vega–Redondo (1997)).
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Proof. The proposition is proved using the theory developed by Milgrom and

Roberts (1991). First note that for all i ∈ In, Γi is a compact subset of IR+. Define

for all i ∈ In the (continuous) function π̃i : IR+ × IRn−1
+ → IR+, given by

π̃i(qi, q−i) = −
∣

∣

∣
P ′(qi +Q−i)(1 + αi(I))

n

2
qi + P (qi +Q−i)− C ′(qi)

∣

∣

∣
.

Consider the normal-form game
(

In, (Γi)i∈In , (π̃i)i∈In

)

. Let S ⊂ Γ, denote by Si the

projection of S on Γi and define S−i =
∏

j 6=i Sj . For all i ∈ In the set of undominated

strategies with respect to S is given by the set

Ui(S) =
{

qi ∈ Γi

∣

∣

∣
∀y∈Si∃q−i∈S−i : π̃i(qi, q−i) ≥ π̃i(y, q−i)

}

.

Let U(S) =
∏

i∈In
Ui(S), the k-th iterate of which is given by U k(S) = U

(

Uk−1(S)
)

,

k ≥ 2, where U1(S) = U(S). Note that since qα(I) is unique we have

U∞(Γ) = {qα(I)}.

Following Milgrom and Roberts (1991) we say that {qt}t∈IN is consistent with adap-

tive learning if

∀t̂∈IN∃t̄>t̂∀t̃≥t̄ : q
t̃ ∈ U

(

{qs|t̂ ≤ s < t̃}
)

.

Let t̂ ∈ IN, take t̄ = t̂+ 1 and let t̃ = t̄+ k for some k ∈ {0, 1, 2, . . . }. Then

{qs|t̂ ≤ s < t̃} = {qs|s = t̂, . . . , t̄+ k − 1}.

Let {qt}t∈IN be generated by the pure strategy dynamics, i.e. the strategy dynamics

without the random perturbations. Then we have, by definition, that

∀y∈Γi : π̃i(q
t̃
i , q

t̃−1
−i ) ≥ π̃i(y, q

t̃−1
−i ).

Furthermore, it holds that q t̃−1 ∈ {qs|t̄ ≤ s < t̃}. Hence, we can conclude that

{qt}t∈IN is consistent with adaptive learning. From Milgrom and Roberts (1991,

Theorem 7) one obtains that ‖qt − qα(I)‖ → 0 as t→∞. Since Γ is finite we have

∃t̄∈IN∀t≥t̄ : q
t = qα(I).

So, {qα(I)} is the only recurrent state of the pure strategy dynamics. From Young

(1993) we know that the stochastically stable states are among the recurrent states

of the mutation-free dynamics. Hence, µI(qα(I)) = 1. ¤

Before we turn to Proposition 2, the following lemma is introduced, which plays a

pivotal role in its proof. It compares the equilibrium profits for different conjectures.

Suppose that the market is in a monomorphic state, i.e. all firms have the same

conjecture. The question is what happens to equilibrium profits if k firms deviate
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to another conjecture. If n− k firms have a conjecture equal to α and k firms have

a conjecture equal to α′, let the (unique) equilibrium quantities be denoted by qαk

and qα
′

k , respectively.

Lemma 1 For all k ∈ {1, 2, . . . , n− 1} and α > α′ ≥ −1 it holds that

P
(

(n− k)qαk + kqα
′

k

)

qα
′

k − C(qα
′

k ) > P
(

(n− k)qαk + kqα
′

k

)

qαk − C(qαk ).

The proof of this lemma can be found in Appendix A. Lemma 1 plays a similar role

as the claim in Vega–Redondo (1997, p. 381). The main result in that paper is driven

by the fact that if at least one firm plays the Walrasian quantity against the other

firms playing another quantity, the firm with the Walrasian quantity has a strictly

higher profit. In our model the dynamics is more elaborate. Suppose that all firms

have the Walrasian conjecture and that the strategy dynamics is in equilibrium, i.e.

the Walrasian equilibrium. If at least one player has another conjecture not only its

own equilibrium quantity changes, but also the equilibrium quantities of the firms

that still have the Walrasian conjecture. Lemma 1 states that the firms with the

lower conjecture still have the highest equilibrium profit. This is intuitively clear

form the first-order condition (13). The firms with the lower conjecture increase their

production until the difference between the price and the marginal costs reaches a

lower, but positive, level than the firms with the higher conjecture. Therefore, the

total profit of having a lower conjecture is higher. This happens because the firms do

not realise that in the future their behaviour will be imitated by other firms which

puts downward pressure on industry profits.

Some additional notation and assumptions are needed in the following. For

a matrix A let λj(A) denote the j-th largest eigenvalue in absolute value of A.

Furthermore, define λk(I, J) = lim
ε̃↓0

λε̃k(I, J) and let ζ = max
kI

{

∑

K 6=I

∑m
l=1QkI lK

}

.

The following assumptions are made.

Assumption 2 All eigenvalues of Q are distinct.

Assumption 3 ζ < 1
2

[

1− max
I∈{1,...,N}

λ2(Q
∗
I)
]

.

Since the probability measures νi(·) and ν̃i(·) have full support for all i ∈ In, all

eigenvalues of Q will generically be distinct and, hence, Assumption 2 will generically

be satisfied. Let α(1) be the monomorphic state where all firms have the Walrasian

conjecture, i.e. α(1) = (−1, . . . ,−1) We can now state the following proposition.

Proposition 2 Suppose that Assumptions 1–3 hold. Then there exists an ergodic

Markov chain on Λn with transition matrix Q̃ and unique limit distribution µ̃(·).

For µ̃(·) it holds that µ̃(qα(1)) = 1. Furthermore, µ̃(·) is an approximation of µ(·) of

order O(ζ).
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Proof. First, decompose Q as in (3)-(6). So, the transition matrix Q is decomposed

into a block diagonal matrix Q∗, where each diagonal block is the transition matrix

for the strategy dynamics for a given vector of conjectures, and a matrix that re-

flects the behavioural dynamics. The constant ζ is the maximum degree of coupling

between subsystems Q∗I .

Given the result of Proposition 1 one can aggregate Q using µI(·) in the following

way. Define a Markov chain on Λn with transition matrix Q̃, which has typical

element

Q̃(I, J) =
m
∑

k=1

µI
(

q(k)
)

m
∑

l=1

QkI lJ

=
m
∑

k=1

µI
(

q(k)
)

λk(I, J)
m
∑

l=1

MI(k, l)

=
m
∑

k=1

µI
(

q(k)
)

λk(I, J) = λk(I)(I, J).

Note that the transition matrix Q̃ is the limit of a sequence of ergodic Markov chains

with transition matrices Q̃ε̃ with Q̃ε̃(I, J) = λε̃k(I)(I, J). So, Q̃ has a unique limit

distribution µ̃(·). Under Assumptions 2 and 3, Theorem 3 directly yields that µ̃(·)

is an O(ζ) approximation of µ(·).

The result on µ̃(·) is obtained by using the familiar techniques developed by

Freidlin and Wentzell (1984). First we establish the set of recurrent states for the

mutation-free dynamics of Q̃ε̃. This is the dynamics without the experimentation

part and is thus equal for all ε̃ > 0. From (1) one can see that the transition

probabilities for this dynamics are equal to the transition probabilities of going

from one vector of conjectures α(I) to another vector α(J) given that the current

quantity vector is the equilibrium qα(I). So, the dynamics of Q̃ε̃ is the pure conjecture

dynamics if the quantity dynamics gets sufficient time to settle in equilibrium. Let

the transition matrix for this aggregated pure conjecture dynamics be denoted by

Q̃0.

Lemma 2 The set A of recurrent states for the aggregated mutation-free conjecture

dynamics with transition matrix Q̃0 is given by the set of monomorphic states, i.e.

A =
{

{(α, . . . , α)}
∣

∣α ∈ Λ
}

.

The proof of this lemma can be found in Appendix B. Define the costs between

α(I) and α(J) to be

c(α(I), α(J)) = min
K=1,...,N

{

d(α(I), α(K))
∣

∣Q̃0(K,J) > 0
}

,
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where d(α(I), α(K)) =
∑

i∈In
11(

αi(I)6=αi(K)
). The cost between α(I) and α(J) is

the minimum number of mutations from α(I) that is needed for the pure conjecture

dynamics to have positive probability of reaching α(J). Let α ∈ Λn. An α-tree Hα

is a collection of ordered pairs (α′, α′′) such that:

1. every α′ ∈ Λn\{α} is the first element of exactly one pair;

2. for all α′ ∈ Λn\{α} there exists a path (α′, α1),(α1, α2),. . . ,(αs−1, αs), (αs, α)

in Hα.

For each α-tree Hα the cost of tree Hα is defined by

c(Hα) =
∑

(α′,α′′)∈Hα

c(α′, α′′).

First, we build an α(1)-tree H∗ with minimal costs. Then it is shown that for any

state α ∈ A\{α(1)} and any α-tree Hα the costs will be higher. From Freidlin and

Wentzell (1984, Lemma 6.3.1) one can then conclude that α(1) is the unique element

in the support of µ̃(·). Young (1993) has shown that the minimum cost tree is among

the α-trees where α is an element of a recurrent class of the mutation-free dynamics.

Thus, from Lemma 2 we know that we only need to consider the monomorphic states

in A. This implies that for all α-trees Hα, α ∈ A, we have c(Hα) ≥ |A| − 1, since

one always needs at least one experiment to leave a monomorphic state.

Consider α(1) and the α(1)-tree H∗ that is constructed in the following way.

Let α ∈ A\{α(1)}. For all i ∈ In we have αi > αi(1). Suppose that one firm i

experiments to αi(1) = −1, while the other firms cannot revise their output. Ac-

cording to Lemma 1 with k = 1 this firm has a higher profit in quantity equilibrium

than the other firms. If one period later all other firms j 6= i get the opportunity to

revise their conjectural variation (which happens with positive probability) they will

all choose αj(1) = −1. Hence, one mutation suffices to reach α(1) and, therefore,

c(H∗) = |A| − 1.

Conversely, let Hα be an α-tree for some α ∈ A\{α(1)}. Then somewhere in

this tree there is a path between α(1) and a monomorphic state α′ with α′i > −1

for all i ∈ In. Suppose that starting from α(1) one firm i experiments to α′i. From

Lemma 1 with k = n − 1 it is obtained that firm i has a strictly lower profit than

the other firms in quantity equilibrium. So, to drive the system away from α(1) to

α′ at least two mutations are needed. Hence, c(Hα) > c(H∗). ¤

Proposition 2 gives a result on the convergence of market interaction to the

Walrasian equilibrium that is similar to the result of Vega–Redondo (1997). Appar-

ently, profit imitation is such a strong force that it also drives this more elaborate

behavioural model to the Walrasian equilibrium. Note, however, that the result in
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Proposition 2 is an approximation. It might well be that the support of µ(·) consists

of more states than just the Walrasian equilibrium.

A crucial assumption is the one on the maximum degree of coupling between

subsystems Q∗I , ζ, as stated in Assumption 3. This parameter should not be too

large. Intuitively, this condition requires that the interaction between subsystems Q∗I

is sufficiently low, i.e. that the conjecture dynamics does not happen too frequent.

In Proposition 3 a sufficient condition on p̃ is given for Assumption 3 to hold.

Proposition 3 If p̃ < 1−
(

3
4

)1/n
, then Assumption 3 is satisfied.

Proof. Let I ∈ {1, 2, . . . , N}. From Bauer et al. (1969) we obtain an upper bound

for the second largest eigenvalue in absolute value of Q∗I :

λ2(Q
∗
I) ≤ min

{

max
1≤θ,ρ≤m

1

2

m
∑

i=1

v1i (Q
∗
I)
∣

∣

∣

Q∗I(i, θ)

v1θ(Q
∗
I)
−

Q∗I(i, ρ)

v1ρ(Q
∗
I)

∣

∣

∣
,

max
1≤θ,ρ≤m

1

2

m
∑

i=1

|Q∗I(θ, i)−Q∗I(ρ, i)|
}

,

(14)

where v1(Q∗I) is the eigenvector corresponding to the largest eigenvalue of Q∗I . Since

Q∗I is a stochastic matrix we have that

v1i (Q
∗
I) = µIi = 11(q=qα(I)).

Consider the first term on the right-hand side of (14). For θ = k(I) and ρ 6= k(I),

we get

1

2

m
∑

i=1

v1i (Q
∗
I)
∣

∣

∣

Q∗I(i, θ)

v1θ(Q
∗
I)
−

Q∗I(i, ρ)

v1ρ(Q
∗
I)

∣

∣

∣
=

1

2

∣

∣

∣

Q∗I(k(I), θ)

µIk(I)
−

Q∗I(k(I), ρ)

µIρ

∣

∣

∣
. (15)

Take θ = k(I), and ρ 6= k(I) such that q(ρ)i = q(k(I))i for some i ∈ In. Then

Q∗(k(I), ρ) > 0 and µIρ = 0, so that (15) is unbounded.

The maximum of the second term on the right-hand side of (14) is attained for

θ = k(I) and some ρ 6= k(I), such that q(k(I)) is not a best response to q(ρ). One

obtains that

1

2

m
∑

i=1

|Q∗I(k(I), i)−Q∗I(ρ, i)| ≤
1

2
|Q∗I(k(I), k(I))| =

1

2
,

since q(k(I)) is a best response to q(k(I)). Hence, we find that λ2(Q
∗
I) ≤

1
2 for all

I = 1, . . . , N . So, we have that

1

2
[1− max

I=1,...,N
λ2(Q

∗
I)] ≥

1

4
.
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Note that it holds that

ζ = max
kI

{

∑

K 6=I

m
∑

l=1

QkI lK

}

= max
kI

{

∑

K 6=I

λk(I,K)
}

= max
kI

{

1− lim
ε̃↓0

λε̃k(I, I)
}

.

Furthermore, by definition we have that

λε̃k(I, I) ≥
∏

i∈In

{(1− ε̃)(1− p̃) + ε̃ν̃i(αi(I))}.

Therefore, we conclude that

ζ ≤ 1− lim
ε̃↓0

∏

i∈In

{(1− ε̃)(1− p̃) + ε̃ν̃i(αi(I))}

= 1− (1− p̃)n <
1

4

⇐⇒ p̃ < 1−

(

3

4

)1/n

,

which proves the proposition. ¤

Note that this upper bound is exponentially decreasing in the number of firms,

from p̃ < 0.14 for n = 2, to p̃ < 0.03 for n = 10. This implies that, for the

Walrasian equilibrium to be the only stochastically stable state in a large industry,

the rate of behavioural change needs to be very low. In other words, leaving the rate

of behavioural change constant, this analysis indicates that smaller industries are

possibly more competitive than larger industries, since uniqueness of the Walrasian

equilibrium as the only stochastically stable state cannot be guaranteed.

5 Discussion

This paper analysed a general framework for analysing stochastic stability in models

with multi-level evolution, namely strategy and behavioural evolution. It was shown

that under certain conditions, the theory of near-complete decomposability can be

used to disentangle the two levels of evolution. They can then be studied separately

and the equilibrium of the strategy dynamics can be used to obtain the equilibrium

of the behavioural dynamics, which, in turn, is an approximation of the equilibrium

of the combined dynamics. This approach is applied to an extension of the Vega–

Redondo (1997) model of imitation in Cournot oligopoly.
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In the application, we model strategy dynamics based on myopic optimisation

by firms that includes the conjectured market response to the firm’s own quantity-

setting behaviour which is modelled by means of a conjecture parameter. At a

second level, we allow firms to change or adapt their behaviour in the sense that

they can change their conjecture. This decision is also modelled to be boundedly

rational. Firms look at their competitors and imitate the behaviour of the most

successful firm.

The main conclusion of Proposition 2 is that if behavioural adjustment takes

place at a sufficiently low frequency, the market ends up in the Walrasian equilib-

rium in the long-run. An explicit upper bound for this frequency is provided and is

shown to be exponentially decreasing in the number of firms. So, even with more

elaborate behavioural dynamics than e.g. Vega–Redondo (1997), evolution still se-

lects the Walrasian equilibrium. The appeal of this equilibrium lies in the fact that if

behaviour is guided by profit imitation, i.e. relative payoffs, this leads to spitefulness

in a firm’s actions. This in turn leads to selection of the Walrasian equilibrium. The

analysis indicates that smaller industries are possibly more competitive than larger

industries.

Modelling explicit dynamic processes where players learn from the past is im-

portant, since in a ”pure repeated game framework[...]history matters only because

firms threaten it to matter” (Vives (1999)). With learning or evolution, history

matters per se. Until recently, most models of learning are restricted to dynamics

at one level. The analysis in this paper suggests ways in which to include several

levels of evolution. This makes it possible to study both learning and evolution sep-

arately in a unified framework, i.e. the short-run and the long-run. In the example

of the oligopolistic industry: how do (short-run) strategic choices based on conjec-

tures and (long-run) competitive and Darwinian pressures interact? We restricted

ourselves to two levels, but in principle it is straightforward to extend the theory of

near-complete decomposability to more levels of learning or evolution.

Another application of the presented theory is for simulation analysis. Analysing

large dynamic agent based systems can be computationally very intensive. If one

is willing to assume relatively infrequent interactions between different levels of

dynamics, the theory of near-complete decomposability can greatly reduce the com-

putational burden of these models.
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Appendix

A Proof of Lemma 1

Since all firms are identical and solutions to the first-order conditions are unique,

firms with the same conjecture have the same equilibrium quantity. Therefore, the

equilibrium quantities qαk and qα
′

k satisfy13

P ′
(

(n− k)qαk + kqα
′

k

)

(1 + α)
n

2
qαk + P

(

(n− k)qαk + kqα
′

k

)

− C ′(qαk ) = 0

P ′
(

(n− k)qαk + kqα
′

k

)

(1 + α′)
n

2
qα

′

k + P
(

(n− k)qαk + kqα
′

k

)

− C ′(qα
′

k ) = 0.

These first-order conditions imply that

P ′
(

(n− k)qαk + kqα
′

k

)

(1 + α)
n

2
qαk − C ′(qαk )

= P ′
(

(n− k)qαk + kqα
′

k

)

(1 + α′)
n

2
qα

′

k − C ′(qα
′

k ).
(A.1)

Suppose that qαk ≥ qα
′

k . There are two possible cases:

1. if C ′(qαk ) ≥ C ′(qα
′

k ), then (A.1) immediately gives a contradiction;

2. if C ′(qαk ) < C ′(qα
′

k ), then according to (A.1) it should hold that

−P ′
(

(n− k)qαk + kqα
′

k

)

(1 + α)
n

2
qαk ≤ P ′

(

(n− k)qαk + kqα
′

k

)

(1 + α′)
n

2
qα

′

k .

This implies that
qα
k

qα
′

k

≤ 1+α′

1+α . However, since
qα
k

qα
′

k

≥ 1 and 1+α′

1+α < 1 this gives

a contradiction.

According to the mean-value theorem there exists a q ∈ (qαk , q
α′

k ) such that

C ′(q) =
C(qα

′

k )− C(qαk )

qα
′

k − qαk
,

since the cost function is continuous. Furthermore, it holds that

C ′(q) < max{C ′(qαk ), C
′(qα

′

k )}

≤ P
(

(n− k)qαk + kqα
′

k

)

⇐⇒ P
(

(n− k)qαk + kqα
′

k

)

qα
′

k − C(qα
′

k ) > P
(

(n− k)qαk + kqα
′

k

)

qαk − C(qαk ),

which proves the lemma. ¤

13Here the assumption that α′ ≥ −1 is crucial. For if α > −1 and α′ < −1 the system of

first-order conditions has no solution.
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B Proof of Lemma 2

Given a monomorphic state, the pure conjecture dynamics remains in the same

monomorphic state with probability one. So A ⊃
{

{(α, . . . , α)}
∣

∣α ∈ Λ
}

. Conversely,

let α ∈ Λn\A. With positive probability all firms may adjust their conjecture and

with positive probability all choose the same conjecture, leading to a monomorphic

state. Hence,

A ⊂
{

{(α, . . . , α)}
∣

∣α ∈ Λ
}

,

which proves the lemma. ¤

References

Alchian, A.A. (1950). Uncertainty, Evolution, and Economic Theory. Journal of

Political Economy , 58, 211–221.

Alós-Ferrer, C. (2004). Cournot versus Walras in Dynamic Oligopolies with Memory.

International Journal of Industrial Organization, 22, 193–217.

Alós-Ferrer, C. , A.B. Ania, and K.R. Schenk-Hoppé (2000). An Evolutionary Model
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