Investigating Nonlinearity: A Note on the Estimation of Hamilton's Random Field Regression Model*

D. Bond, M.J. Harrison and E.J. O'Brien
University of Ulster and Trinity College Dublin

April 6, 2005

Abstract

This is a revised and extended version of the authors' 2003 Trinity Economic Paper. It describes Hamilton's (2001) approach to nonlinear econometric modelling and some of the methods of nonlinear optimization, as before, but adds significantly to the investigation of Hamilton's Gauss program for the implementation of his methodology. Specifically, it reports on the performance of this program using data relating to Hamilton's US Phillips curve example, the use of two versions of the Gauss software and a range of numerical optimization options. It also examines the impact of changes in initial parameter estimates, the use of algorithm switching strategies, and the effects of changes in the sample data on the results produced by Hamilton's procedure. The new results presented suggest some further clear conclusions that will be of value to those using Hamilton's method.

J.E.L. Classification: C13, C51, C61

Keywords: nonlinearity, numerical optimization, US Phillips curve.

[^0]
Investigating Nonlinearity: A Note on the Estimation of Hamilton's Random Field Regression Model

by
D. Bond, M.J. Harrison and E.J. O'Brien

1. Introduction

In an important recent paper, Hamilton (2001) proposed an approach to nonlinear modelling of economic relationships that provides a single flexible parametric framework for testing for nonlinearity, drawing inference about the form of nonlinearity, and assessing the adequacy of the description of nonlinearity provided by specific models. Following Wecker and Ansley (1983), the approach treats functional form as the outcome of a latent stochastic process that is part of the data-generating process; that is, the conditional expectation function associated with a regression model is thought of as being generated randomly prior to the generation of the data. This latent process is modelled using a new Gaussian random field concept that generalizes Brownian motion to k dimensions, and the parameters of the process are estimated by maximum likelihood. The method is a good deal more than an exploratory data or data-smoothing device. From the practicing economist's viewpoint, its importance lies in the valuable insights it can provide for model construction and the resulting enhancement of the forecasting ability of economic models.

However, the new methodology has been little used to date and its full potential remains to be established. As Hamilton (2001, p. 552) points out, its usefulness for particular sample sizes and nonlinearities is a matter for empirical investigation. Yet, citing his own three examples and the Monte Carlo studies by Dahl (1998), he suggests that the method holds much promise. We very much agree.

The aims of the present paper are modest and the focus intentionally narrow. The main purpose is to address a number of practical issues that arise when using the Hamilton approach. The first of these concerns computation: we report on our experience with Hamilton's software to implement the method. The program is written in Gauss and can be freely downloaded from http://weber.ucsd.edu/~jhamilto. It appears that the numerical optimization involved is not an entirely straightforward matter, either when using Hamilton's own dataset or our alternative samples. It should be stressed at the outset that this is a result of difficulties with numerical optimization and not the Hamilton method itself. Thus while the Hamilton case
study is our primary focus, this finding may have more general relevance for procedures that employ similar optimization techniques. The second issue concerns the sensitivity of the method to changes in data. Our experiments suggest that minor data changes can have implications for computation and big effects on the results. Another aim, given the length and difficulty of the original paper, is to provide a concise and reasonably accessible account of Hamilton's methodology for non-specialist practitioners, though the nature of the subject is such that it is not possible to avoid technicalities.

The structure of the paper is as follows. Section 2 describes the new approach to modelling nonlinearity; sections 3 and 4 report on computational and datasensitivity matters, respectively; and section 5 contains a brief summary and conclusion.

2. Hamilton's Method of Parametric Flexible Nonlinear Inference

To facilitate cross-reference to the original paper, the notation used in this section is similar to that used by Hamilton (2001).

2.1 The model

Our interest is in the nonlinear regression denoted by

$$
\begin{equation*}
y_{t}=\mu\left(\mathbf{x}_{t}\right)+\varepsilon_{t}, \quad t=1,2, \ldots, T \tag{2.1}
\end{equation*}
$$

where y_{t} is a scalar, $\mathbf{x}_{t}=\left[x_{i t}\right]$ is a k-vector of observations on the explanatory variables at time t, ε_{t} is a stochastic disturbance with zero mean and constant variance, independent of lagged values of \mathbf{x}_{t} and y_{t}, and $\mu(\mathbf{x})$ denotes the conditional expectation function $E(y \mid \mathbf{x})$. The nature of $\mu(\mathbf{x})$ is fundamental to Hamilton's approach and is considered to be determined as

$$
\begin{equation*}
\mu(\mathbf{x})=\alpha_{0}+\boldsymbol{\alpha}^{\prime} \mathbf{x}+\lambda m(\mathbf{g} \odot \mathbf{x}) \tag{2.2}
\end{equation*}
$$

where α_{0} and λ are scalar parameters, $\boldsymbol{\alpha}=\left[\alpha_{i}\right]$ and $\mathbf{g}=\left[g_{i}\right]$ are k-vectors of parameters, $m(\cdot)$ is a realization of a stochastic process called a random field, and \odot denotes element-by-element multiplication. The realization $m(\cdot)$, hence $\mu(\mathbf{x})$, is assumed to be generated by nature prior to and independently of all of the observations. Given this fixed $\mu(\mathbf{x})$, the values for ε_{t} and \mathbf{x}_{t} are then generated and y_{t}, is determined according to the regression (2.1).

The interpretation of the parameters in (2.2) is vitally important for the application of Hamilton's method. In particular, the scalars λ and $g_{i}, i=1,2, \ldots, k$, characterize the relationship between $m(\cdot)$ and the conditional expectation function $\mu\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. Specifically, λ is a measure of the overall 'weight' of the process $m(\cdot)$ in the conditional expectation, while the magnitudes of the g_{i} indicate the degree of nonlinearity associated with their respective x_{i}. Thus $\lambda=0$ indicates that $m(\cdot)$ makes no contribution and the conditional expectation is linear, in which case (2.1) is the familiar general linear model. Similarly, $g_{i}=0$ implies that the conditional expectation is linear in x_{i}, while $g_{i} \neq 0$ signifies that it is nonlinear in x_{i}. If all of the $g_{i} \rightarrow 0$, the contribution of $m(\cdot)$ to the conditional expectation, hence to y_{t}, becomes indistinguishable from that of α_{0}; if all of the $g_{i} \rightarrow \infty$, the contribution to y_{t} is indistinguishable from that of ε_{t}. The interpretation associated with α_{0} and the α_{i} is the standard one.

The key component in (2.2), on which the interpretation of the g_{i} depends, is the random realization $m(\cdot)$, whose nature and role require explanation before the practical matters of estimation and testing are considered. First, consider a uniform orthogonal grid in \Re^{k}, bounded in the direction of each of the k standard basis vectors or Cartesian co-ordinates by some lower value a_{j} and some upper value $b_{j}, j=1,2, \ldots, k$. By uniform we mean that the intervals defined by the grid are of equal length in the direction of each of the k co-ordinates, and the number of intervals in each direction is the same. Note that this does not imply that the intervals in different directions have to be the same length unless the a_{j} are equal and the b_{j} are equal $\forall j$. Let the set of all nodes in the grid be A_{N}, where $N-1$ is the number of grid intervals in each direction and N^{k} is therefore the number of distinct points in A_{N}. For each point $\mathbf{x} \in A_{N}$, let $e(\mathbf{x}) \sim \mathbb{N}(0,1)$ and be independent of $e(\mathbf{z})$ for all $\mathbf{x} \neq \mathbf{z}$; let $B_{N}(\mathbf{x})=\left\{\mathbf{z} \in A_{N}:(\mathbf{x}-\mathbf{z})^{\prime}(\mathbf{x}-\mathbf{z}) \leq 1\right\}$, i.e., the set of all points in A_{N} whose distance from \mathbf{x} is less than or equal to unity; and let $n_{N}(\mathbf{x})$ denote the number of points in $B_{N}(\mathbf{x})$. Hamilton (2001, p.540) then defines the scalar process $m_{N}(\mathbf{x})$ as

$$
\begin{equation*}
m_{N}(\mathbf{x})=\left[n_{N}(\mathbf{x})\right]^{-\frac{1}{2}} \sum_{\mathbf{z} \in B_{N}(\mathbf{x})} e(\mathbf{z}) . \tag{2.3}
\end{equation*}
$$

This process is illustrated for $k=2, a_{1}=a_{2}=0, b_{1}=5, b_{2}=3$, and equal interval lengths in Hamilton (2001, p.541), so that the number of intervals in each direction is not the same, as required by the definition of A_{N}. Taking the limit of (2.3) as the grid partition becomes finer, i.e., as $N \rightarrow \infty$ and the interval length in each direction of the grid tends to zero, we have the notion of a continuous
scalar-valued k-dimensional random field. The stochastic nature of this is such that for any $\mathbf{x} \in A_{N}, m(\mathbf{x}) \sim \mathbb{N}(0,1)$. The similarity to standard Brownian motion is apparent.

For arbitrary points \mathbf{x} and \mathbf{z} in \Re^{k}, the correlation between $m(\mathbf{x})$ and $m(\mathbf{z})$ is zero if the distance between \mathbf{x} and \mathbf{z} is greater than 2 . If this distance is not greater than 2 , it can be shown, though the proofs are difficult, that

$$
\begin{equation*}
H_{k}(h)=\operatorname{Cov}_{k}(m(\mathbf{x}), m(\mathbf{z}))=\frac{G_{k-1}(h, 1)}{G_{k-1}(0,1)} \tag{2.4}
\end{equation*}
$$

where $G_{k-1}(h, 1)=-\frac{h}{k}(1-h)^{\frac{k-1}{2}}+\frac{k-1}{k} G_{k-3}(h, 1), h$ is one-half the distance between \mathbf{x} and $\mathbf{z}, k=2,3, \ldots$ and the initial values are $G_{0}(h, 1)=1-h$ and $G_{1}(h, 1)=\frac{\pi}{4}-\frac{1}{2} h\left(1-h^{2}\right)^{\frac{1}{2}}-\frac{1}{2} \sin (h)$. See Lemma 2.1 and Theorem 2.2 in Hamilton (2001, p. 541), and note that the details relating to Equation (2.4) are expressed slightly differently than in Hamilton's lemma and theorem. Equation (2.4) can be calculated recursively, but fortunately its values for $k=1$ to 5 inclusive are provided in Table I of Hamilton (2001, p. 542). It is this covariance that provides the means by which the g_{i} govern the curvature of $\mu(\mathbf{x})$ in (2.2); see the illustrative case of $k=1$ in Hamilton (2001, p. 540).

2.2 Estimation

Assuming normality of the ε_{t}, it follows from (2.1), (2.2) and (2.4) that

$$
\begin{equation*}
\mathbf{y} \sim \mathbb{N}\left(\mathbf{X} \boldsymbol{\beta}, \mathbf{C}+\sigma^{2} \mathbf{I}_{T}\right) \tag{2.5}
\end{equation*}
$$

where \mathbf{y} is the T-vector of observations on the dependent variable in (1), \mathbf{X} is the $T \times(k+1)$ matrix of observations on the k explanatory variables and a column of ones associated with the intercept, $\boldsymbol{\beta}=\left[\begin{array}{ll}\alpha_{0} & \boldsymbol{\alpha}^{\prime}\end{array}\right]^{\prime}$ is the $(k+1)$ vector of parameters of the linear component of the conditional expectation, $\mathbf{C}=\left[\lambda^{2} H_{k}\left(h_{t s}\right)\right]$ is a $T \times T$ variance-covariance matrix whose typical element is $\lambda^{2} \operatorname{Cov}_{k}\left(m\left(\mathbf{g} \odot \mathbf{x}_{t}\right), m\left(\mathbf{g} \odot \mathbf{x}_{s}\right)\right)$, and $h_{t s}$ is one-half the distance between $\mathbf{g} \odot \mathbf{x}_{t}$ and $\mathbf{g} \odot \mathbf{x}_{s}$. The likelihood function follows straightforwardly from (2.5) as
$\ln f\left(\mathbf{y} ; \boldsymbol{\beta}, \mathbf{g}, \lambda, \sigma^{2}\right)=-\frac{T}{2} \ln (2 \pi)-\frac{1}{2} \ln \left|\mathbf{C}+\sigma^{2} \mathbf{I}_{T}\right|-\frac{1}{2}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}\left(\mathbf{C}+\sigma^{2} \mathbf{I}_{T}\right)^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$.
Maximum likelihood provides the basis for inference concerning the parameters $\boldsymbol{\beta}, \mathbf{g}, \lambda$ and σ^{2}; and as Hamilton shows, the procedure is valid for regressors that
are deterministic or lagged values of the dependent variable. However, in the interests of simplifying the calculations, (2.6) is re-written. Defining $\zeta=\frac{\lambda}{\sigma}$, letting $\boldsymbol{\psi}=\left[\boldsymbol{\beta}^{\prime} \sigma^{2}\right]^{\prime}$ be the $(k+2)$-vector of parameters of the linear part of the model and $\boldsymbol{\theta}=\left[\mathbf{g}^{\prime} \zeta\right]^{\prime}$ be the $(k+1)$-vector of parameters of the nonlinear component, and setting $\mathbf{W}(\mathbf{X} ; \boldsymbol{\theta})=\zeta^{2} \mathbf{C}^{*}+\mathbf{I}_{T}$, where $\mathbf{C}^{*}=\lambda^{-2} \mathbf{C}$, the right-hand side of (2.6) can be written as

$$
\begin{equation*}
-\frac{T}{2} \ln (2 \pi)-\frac{T}{2} \ln \sigma^{2}-\frac{1}{2} \ln |\mathbf{W}(\mathbf{X} ; \boldsymbol{\theta})|-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{W}(\mathbf{X} ; \boldsymbol{\theta})^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) . \tag{2.7}
\end{equation*}
$$

The values of the elements of $\boldsymbol{\psi}$ that maximize (2.7) for given $\boldsymbol{\theta}$ can then be calculated analytically as

$$
\begin{align*}
\widetilde{\boldsymbol{\beta}}(\boldsymbol{\theta}) & =\left[\mathbf{X}^{\prime} \mathbf{W}(\mathbf{X} ; \boldsymbol{\theta})^{-1} \mathbf{X}\right]^{-1} \mathbf{X}^{\prime} \mathbf{W}(\mathbf{X} ; \boldsymbol{\theta})^{-1} \mathbf{y} \tag{2.8}\\
\widetilde{\sigma}^{2}(\boldsymbol{\theta}) & =\frac{1}{T}[\mathbf{y}-\mathbf{X} \widetilde{\boldsymbol{\beta}}(\boldsymbol{\theta})]^{\prime} \mathbf{W}(\mathbf{X} ; \boldsymbol{\theta})^{-1}[\mathbf{y}-\mathbf{X} \widetilde{\boldsymbol{\beta}}(\boldsymbol{\theta})] \tag{2.9}
\end{align*}
$$

Thus (2.7) may be concentrated as

$$
\begin{equation*}
\phi(\boldsymbol{\theta} ; \mathbf{y}, \mathbf{X})=-\frac{T}{2} \ln (2 \pi)-\frac{T}{2} \ln \widetilde{\sigma}^{2}(\boldsymbol{\theta})-\frac{1}{2} \ln |\mathbf{W}(\mathbf{X} ; \boldsymbol{\theta})|-\frac{T}{2} . \tag{2.10}
\end{equation*}
$$

Hence numerical maximization of (2.10) gives the maximum likelihood estimate of $\boldsymbol{\theta}$, which, via (2.8) and (2.9), yields the estimate of $\boldsymbol{\psi}$.

2.3 Testing for nonlinearity

The form of the model used in Hamilton's approach suggests that a simple method of testing for nonlinearity is to check if λ, or λ^{2}, is zero or not. Hamilton shows that if $\lambda^{2}=0$, and the nonlinear model is estimated, then for fixed \mathbf{g}, the maximum likelihood estimator $\widetilde{\lambda}^{2}$ is consistent for the true value of zero and asymptotically normal. Thus a test based on the use of standard normal tables is suggested. However, given the maximum likelihood approach to estimation and the linearity of (2.1) under the null hypothesis that $\lambda^{2}=0$, an obvious and perhaps more appealing way of testing is to use the Lagrange multiplier principle, which requires only a simple linear regression to be estimated. Under the assumption of normality, Hamilton derives the appropriate score vector of first derivatives and the associated information matrix and proposes a form of LM test for practical application. The procedure is as follows:

- Set $g_{i}=\frac{2}{\sqrt{k s_{i}^{2}}}$, where s_{i}^{2} is the variance of explanatory variable x_{i}, excluding the constant term whose variance is zero. This g_{i} is approximately the mean of the lognormal Bayesian prior used by Hamilton (2001, Section 5) for θ.
- Calculate the $T \times T$ matrix, \mathbf{H}, whose typical element is $H_{k}\left(\frac{1}{2}\left\|\mathbf{g} \odot \mathbf{x}_{t}-\mathbf{g} \odot \mathbf{x}_{s}\right\|\right)$, i.e., the function $H_{k}\left(h_{t s}\right)$ defined in (2.4) and (2.5).
- Use OLS to estimate the standard linear regression $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ and obtain the usual residuals, $\widehat{\boldsymbol{\epsilon}}$, and standard error of estimate, $\widehat{\sigma}=(T-k-1)^{-\frac{1}{2}} \sqrt{\widehat{\boldsymbol{\epsilon}}^{\prime}} \widehat{\boldsymbol{\epsilon}}$.
- Finally, compute the statistic

$$
\begin{equation*}
\varkappa^{2}=\frac{\left[\hat{\boldsymbol{\epsilon}}^{\prime} \mathbf{H} \widehat{\boldsymbol{\epsilon}}-\widehat{\sigma}^{2} \operatorname{tr}(\mathbf{M H})\right]^{2}}{\hat{\sigma}^{4}\left\{2 \operatorname{tr}\left(\left[\mathbf{M H M}-(T-k-1)^{-1} \mathbf{M} \operatorname{tr}(\mathbf{M H})\right]^{2}\right)\right\}} \tag{2.11}
\end{equation*}
$$

where $\mathbf{M}=\mathbf{I}_{T}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ is the familiar symmetric idempotent matrix.
As $\varkappa^{2} \stackrel{A}{\sim} \chi_{1}^{2}$ under the null hypothesis, linearity $\left(\lambda^{2}=0\right)$ would be rejected if \varkappa^{2} exceeded the critical value, $\chi_{1, \alpha}^{2}$, for the chosen level of significance, α. Otherwise the null of linearity would not be rejected. For example, at the 5 per cent significance level, the null would be rejected if $\varkappa^{2}>3.84$. In this case the alternative nonlinear specification given by (2.1) and (2.2) would be preferred. The identification of a specific form of nonlinearity is greatly aided by the estimate of the conditional expectation $\mu\left(\mathbf{x}_{t}\right)$ and, specifically, the \widetilde{g}_{i} and $\widetilde{\zeta}$. The matter is explained in Hamilton (2001, Section 5) and illustrated in the three examples in his Section 7; note the role of his Equation (5.17). However, this is not pursued in the present paper, which concentrates on the nonlinear estimation per se.

3. Computational Issues

The implementation of Hamilton's methodology is straightforward, in principle, given the on-line availability of Hamilton's software. In practice, however, difficulties may await the unwary. These difficulties relate to the nonlinear optimization algorithms in the OPTMUM procedure in Gauss, which is at the heart of Hamilton's program. Indeed, in our original attempts to run the program using Gauss 5, the optimization procedure failed completely and no nonlinear estimates were obtained. It was this experience that motivated the research for the present paper.

The methods of nonlinear optimization are familiar to most econometricians, and the particular algorithms available in Gauss may be familiar to some Gauss users. However, most economists probably do not share this familiarity. Therefore, to assist with the understanding of the material in this and the following section, a brief description of numerical optimization and the relevant algorithms is provided in the following subsection. Further details on numerical optimization may be found in the texts by Brent (1973), Greene (2003), Murray (1972) and the Gauss reference manual Optimization, Aptech Systems, Inc., 2001, especially chapters 2 and 3.

3.1 Nonlinear optimization

The OPTMUM procedure in Gauss maximizes the function (2.10), $\phi(\boldsymbol{\theta} ; \mathbf{y}, \mathbf{X})$, by minimizing the negative of the function with respect to its vector of parameters $\boldsymbol{\theta}$. Given the derivatives of this objective function with respect to $\boldsymbol{\theta}$, i.e., the gradient vector, which it computes numerically, and initial values for $\boldsymbol{\theta}$, OPTMUM proceeds iteratively, computing a direction, \mathbf{d}, and a step length, s, at each iteration. The quantity $s \mathbf{d}$ is a vector of values that is added to the current estimate of $\boldsymbol{\theta}$, and therefore has the same dimension as $\boldsymbol{\theta}$, and s is a scalar. Thus, given a value for \mathbf{d}, the current estimate, $\widetilde{\boldsymbol{\theta}}$, is updated as

$$
\begin{equation*}
\widetilde{\boldsymbol{\theta}}_{+}=\widetilde{\boldsymbol{\theta}}+s \mathbf{d} \tag{3.1}
\end{equation*}
$$

hence s may be interpreted as changing the rate of descent of the objective function in the given direction. We describe in turn how \mathbf{d} and s are computed, concentrating on the former.

Defining \mathbb{G} to be the $(k+1)$ gradient vector and \mathbb{H} to be a $(k+1) \times(k+1)$ symmetric matrix, a standard method of calculating \mathbf{d} is as

$$
\begin{equation*}
\mathbf{d}=\mathbb{H}^{-1} \mathbb{G} \tag{3.2}
\end{equation*}
$$

However, as numerical matrix inversion may be a risky process, the OPTMUM procedure can avoid it by computing \mathbf{d} as the solution of the equation

$$
\begin{equation*}
\mathbb{H} \mathbf{d}=\mathbb{G}, \tag{3.3}
\end{equation*}
$$

which is thought to be numerically more reliable. While \mathbb{G} is calculated in a standard manner, \mathbb{H} may be calculated in different ways depending on which algorithm is selected. Several approaches are available in OPTMUM.

The steepest descent algorithm simply sets $\mathbb{H}=\mathbf{I}_{(k+1)}$. While this is computationally undemanding and therefore attractive, the descent may be slow and require many iterations before convergence.

The PRCG or Polak and Ribiere (1969) conjugate gradient method is a development of the steepest descent method that also uses only the gradient but updates the direction as

$$
\begin{equation*}
\mathbf{d}_{+}=\mathbb{G}_{+}+r \mathbf{d}, \text { where } r=\frac{\left(\mathbb{G}_{+}-\mathbb{G}\right)^{\prime} \mathbb{G}_{+}}{\mathbb{G}^{\prime} \mathbb{G}} \tag{3.4}
\end{equation*}
$$

There are several more complex methods. The Newton algorithm equates \mathbb{H} to the Hessian of the objective function, which may be computed numerically as the gradient of the gradient. Unfortunately, this computation is generally a formidable numerical problem and, as it is required at each iteration, makes the algorithm slow and possibly unreliable. However, when it works smoothly, the Newton algorithm may converge in fewer iterations than other methods.

The large computational problems associated with the calculation of the Hessian in the Newton method are avoided by certain so-called quasi-Newton algorithms. These start with an initial estimate of the Hessian and employ updates that add information at each iteration without requiring the calculation of second derivatives. Although they generally need more iterations to achieve convergence than the Newton method, their numerical efficiency means that they are usually faster and, furthermore, tend to be more robust to the condition of the model and data. The OPTMUM procedure contains three such algorithms: the BFGS method due to Broyden (1967), Fletcher (1970), Goldfarb (1970) and Shanno (1970), the DFP method of Davidon (1968) and Fletcher and Powell (1963), and BFGS-SC, which is a modified BFGS algorithm in which the formula for the computation of the update of the Hessian estimate has been changed to make it scale free. In all three cases, the OPTMUM implementation of the algorithm uses the Cholesky factorization of the approximation to the Hessian in (3.3), i.e., $\mathbb{H}=\mathbb{C}^{\prime} \mathbb{C}$, before solution for \mathbf{d}. The BFGS algorithm is the default choice in OPTMUM, while the other five are available as options.

The OPTMUM procedure in Gauss 5 also includes a number of methods for computing the step length, s. The default method is called STEPBT, which is described in Dennis and Schnabel (1983). It first attempts to fit a quadratic to the objective function and computes an estimate of s that minimizes the quadratic. If that fails, it tries a cubic function, which is rather more versatile in cases where the objective function is not well approximated by a quadratic.

If STEPBT fails, then BRENT is used, a technique due to Brent (1972) that evaluates the objective function at a sequence of test values for s, determined by extrapolation and interpolation using the inverse of the "golden ratio", namely, the constant $\frac{(\sqrt{5}-1)}{2}=0.61803$. This method is generally more efficient than STEPBT but requires significantly more function evaluations.

If, in turn, BRENT fails, then a procedure called HALF is used. Denoting the objective function by $F(\widetilde{\boldsymbol{\theta}}+s \mathbf{d})$, this method first sets $s=1$. If $F(\widetilde{\boldsymbol{\theta}}+s \mathbf{d})<F(\widetilde{\boldsymbol{\theta}})$, then s is set to 1 ; if not, then $s=0.5$ and $F(\widetilde{\boldsymbol{\theta}}+s \mathbf{d})$ is tried. The attempted step length is halved each time the objective function fails to decrease. When the function does decrease, s is set to its current value. This method usually requires the fewest function evaluations but is most likely to fail to find the step length that decreases the objective function.

Thus, if HALF fails, a final search for a random direction that decreases the objective function is implemented. The radius of the random search is fixed via an important global variable in OPTMUM called _oprteps, the default value of which is 0.01 . It is, however, possible to specify any positive value for _oprteps.

3.2 Computations and results

The computations and results in this subsection and the following section relate to Hamilton's Example 3 concerning the post-war US Phillips curve. No results for the test statistic (2.11) are given as they derive from a simple ordinary least squares regression, which is unproblematical. However, they were checked for all of the cases considered in sections 3 and 4 and, without exception, the null of linearity was rejected. Noting that an OLS regression of inflation $\left(\pi_{t}\right)$ on unemployment $\left(u_{t}\right)$, lagged inflation $\left(\pi_{t-1}\right)$, and a time trend (t) reveals statistically insignificant evidence of an inflation-unemployment trade-off using annual data for the period $t=1949$ to 1997, Hamilton (2001, Section 7) investigates whether a nonlinear relation like that defined in (2.1) and (2.2) of the specific form

$$
\begin{equation*}
\pi_{t}=\mu\left(u_{t}, \pi_{t-1}, t\right)+\varepsilon_{t} \tag{3.5}
\end{equation*}
$$

might be an improvement. His results appear on page 563 of his paper. However, as previously mentioned, we were originally unable to reproduce Hamilton's results using Gauss 5 and Hamilton's data: the numerical optimization associated with the maximization of (2.10) failed.

3.2.1 Alternative algorithms and step lengths

Examination of Hamilton's program revealed that it employs the BFGS algorithm and relies on the default value of _oprteps. It also appeared that it had been implemented by Hamilton using an earlier version of Gauss. Indeed, we were able to reproduce his results using Gauss 3, for example, without any modification of the program, although where he reports a value for \widetilde{g}_{2} of 0.16 , we find a value of -0.16 , when rounded to two decimal places like all of his results. This difference in sign may be a typographical error in Hamilton's paper, but is of no consequence for the nonlinear inference, as both positive and negative values imply the identical value of g_{i}^{2}, and therefore of the likelihood function. However, when different algorithms were specified under Gauss 3 by suitable adjustments of the program code, the results, when they were produced using Hamilton's data file, were not always similar to those reported by Hamilton, as shown in Table 1. In this table, algorithms $1,2,3,4,5$ and 6 refer to the steepest descent, BFGS, BFGS-SC, DFP, Newton and PRCG methods, respectively; and the g_{i} and α_{i} refer to the parameters in the nonlinear and the linear components of the conditional expectation function, respectively. The values of $i=1,2,3$ relate to u_{t}, π_{t-1} and t, respectively, while α_{0} is the constant.

The results for BFGS (algorithm 2) in Table 1, obtained using the program in unmodified form, are those corresponding to Hamilton's published results and are included as a convenient reference. Apart from the one difference in sign for \widetilde{g}_{2}, they are identical to his. However, we find that BFGS-SC (algorithm 3) and PRCG (algorithm 6) fail for Hamilton's dataset, steepest descent (algorithm 1) produces noticeably different numerical results from Hamilton's, Newton (algorithm 5) produces very similar results except for the sign on the nonlinear parameter estimate \widetilde{g}_{2}, and DFP (algorithm 4) replicates the results of BFGS, the Hamilton case. Despite the big numerical differences in the results produced using algorithm 1, the high statistical significance of \widetilde{g}_{3} remains and the inference concerning nonlinearity would be basically the same as that drawn by Hamilton.

Following an amount of experimentation involving modification of the program code to utilize different values of _oprteps, we eventually reproduced Hamilton's results using Gauss 5, though not all values of _oprteps proved successful and led to results. Table 2 contains the results for what was perhaps the most successful value for this parameter, namely, _oprteps $=0.00001$, while Table A1 in Appendix A also gives results for certain other _oprteps values, i.e., $0.001,0.1$ and 1.0. As can be see from Table 2, the results from Gauss 5, algorithm 2, are identical to those of Hamilton produced by the same algorithm in Gauss 3. The results
from Gauss 5, algorithms 1 and 5 are similar in absolute terms to those given by algorithm 2 , but there are some sign changes on \widetilde{g}_{2} and \widetilde{g}_{3}. In contrast to what was found using Gauss 3, there are surprisingly large numerical differences between the results from algorithms 4 and 6 and those from algorithm 2 when using Gauss 5. Despite these various changes across some algorithms and the two versions of Gauss, \widetilde{g}_{3} remains the most statistically significant of the nonlinear parameter estimates, though \widetilde{g}_{2} is marginally significant for most of the algorithms and _oprteps values. Algorithm 3 failed in all experiments due to a problem with the Cholesky decomposition (The Gauss diagnostic message produced was "Cholesky downdate failed".), and we suspect that this may be due to a program error in Gauss, which remains to be investigated. The numbers of iterations used by the alternative algorithms are, in relative terms, broadly in line with what was said about relative efficiencies in section 3 .

3.2.2 Initial parameter estimates

Initial estimates of parameters are often critical for convergence of numerical optimization procedures. The initial estimates for the g_{i} parameters in Hamilton's program are identical to those given in his paper for use in testing for nonlinearity, namely, $g_{i}=\frac{2}{\sqrt{k s_{i}^{2}}}$, where s_{i}^{2} is the variance of explanatory variable x_{i}; see section 2.3 above. While there is no information in Hamilton's paper concerning the initial value of ζ, examination of his program revealed the start value $\zeta=0.5$. It was decided to investigate the effect of changes in the initial value of ζ, using the steepest decent algorithm, which, according to Schoenberg (2001, p. 14), is the least affected of the algorithms by choice of starting values, and which was the only algorithm not to have failed in our earlier experiments.

Using _oprteps $=0.00001$ and a range of start values for ζ from 0.1 to 1.5 , inclusive, in steps of 0.1 , we found that failures occurred for the lower values of $0.1,0.2$ and 0.3 , but that all other values of ζ allowed results to be produced. In all successful cases, the number of iterations of algorithm 1 was 150 , the default maximum. There was considerable variability in the final estimates of the g_{i} parameters and their standard errors, although \widetilde{g}_{3} was always significant. The results for these cases are given in Table 5.

3.2.3 Algorithm switching

In order to economize on the number of iterations and to examine whether the variability in parameter estimates noted in the previous subsection could be
reduced, we extended the investigation of the effects of different start values to the use of an algorithm switching procedure involving two different methods, as described by Schoenberg (2001). This procedure begins with algorithm 1, which is robust to initial conditions, and a step length of unity. If the function fails to improve by the default amount of 0.01 , then a switch to algorithm 2 with step length BRENT takes place. We also explored the use of algorithm 5 (Newton) as the second of the algorithms.

Again, the procedure fails for initial values of ζ of $0.1,0.2$ and 0.3 , but produces estimates for all other start values of ζ examined. Considerably fewer iterations are involved in obtaining the final estimates, with a maximum of 29 iterations for initial $\zeta=0.6,0.7$ and 0.8 , and a minimum of 11 iterations for initial $\zeta=$ 1.1. Somewhat fewer iterations are required in all cases but one when the second algorithm is chosen to be Newton. Greatly reduced variability is observed in the final estimates and their standard errors across all cases, and these estimates are very close to Hamilton's original results as given in Table 2. Indeed, to three decimal places, the absolute values of the estimates and their standard errors are identical, save for the case of $\widetilde{\alpha}_{0}$, where the differences are none the less very small. Details of the results for the two versions of the algorithm switching experiment for the odd start values of ζ are presented in Tables 6 and 7. Results for the even start values, which are similar to those contained in the tables, are available on request from the authors.

4. Sensitivity to Data

This section reports on the performance of the program and Gauss algorithms, and the results produced, when various small changes are made to the dataset used in Hamilton's Example 3. Three kinds of change were considered. The first deleted observations at the start of the dataset and the second deleted observations at the end to give successively smaller samples. The third added new observations to create successively larger, more up-to-date samples. The additional US unemployment data were obtained from http://www.bls.gov/cps/cpsdat1.pdf and the new values for the US consumer price index from ftp://ftp.bls.gov/pab/special.requests/cpi/ cpiai.txt. Checks confirmed that the observations for the period 1949 to 1997, also available from these websites, were identical to those in Hamilton's dataset. In line with Hamilton's treatment, no re-scaling was undertaken.

In all, ten alternative samples were used. Hamilton's original dataset is called dataset 1. Deleting the first observation from Hamilton's data gives dataset 2; deleting the first and second observations gives dataset 3; deleting the first, second
and third observations gives dataset 4. Similarly, deleting the last observation gives dataset 5; deleting the last two observations gives dataset 6; deleting the last three observations gives dataset 7. Finally, adding the observation for 1998 gives dataset 8; adding the two observations for 1998 and 1999 gives dataset 9; adding the three observations for 1998, 1999 and 2000 gives dataset 10; and adding the four observations for 1998 to 2001, inclusive, gives dataset 11.

For each of the 10 alternative samples, Hamilton's program was implemented using Gauss 5 and the values for _oprteps of 0.00001, 0.001, 0.1 and 1.0, which were referred to in the previous section and appear in Table A1. The Gauss 3 implementation was also used with datasets $2,5,7,8$ and 11. A large volume of results was therefore produced and the relevant details are tabulated in Appendix B. Table 3 summarizes the nonlinear estimates given by the Gauss 3 implementation of the program using dataset 2. These results are typical in regard to the incidence of failure of nonlinear optimization algorithms and of the differences in the results produced by different algorithms that did not fail. The results from Gauss 3 for data sets 5, 7, 8 and 11 are contained in tables B11, B12, B13 and B14, respectively, and the level of program failure in each case is at least as great as that observed using dataset 2 .

As can be seen from Table 3, algorithm 2, which is Hamilton's default method, as well as algorithms 3 and 4, fail in Gauss 3. The reason is that, after one or several iterations, the algorithm encountered a non-positive definite matrix. One or other of two Gauss diagnostic messages were obtained in this event. The first was "Negative of Hessian is not positive definite"; the second was "Matrix not positive definite". Of the methods that worked, algorithm 1 and 6 give similar results but algorithm 5 gives very different results from these, including different signs for all of the \widetilde{g}_{i} coefficients. These differences are noteworthy, as is the fact that algorithm 2 fails for all of the modified datasets examined.

The details concerning the Gauss 5 implementation using datasets 2 to 11, inclusive, are contained in tables B1 to B10, respectively. For convenience, the information from these tables on success and failure of the algorithms is summarized in Table 4, along with similar information for Hamilton's data (dataset 1). Of the 264 program runs, 102 or 39 per cent failed to produce nonlinear estimates. At the extremes, algorithm 3 (BFGS-SC) failed in all cases, while algorithm 1 (steepest descent) was successful in all cases, albeit requiring the maximum number of iterations permitted. Increasing the maximum number of iterations to 250 , for those algorithms that reached the original maximum of 150 , did not alter the results obtained to three places of decimals. Algorithm 5 (Newton) was the most efficient
in terms of number of iterations but it failed in 10 out of 44 runs, i.e., in 23 per cent of cases. Algorithm 2 (BFGS), the default in Hamilton's program, failed in 28 out of 44 runs or 64 per cent of cases.

As noted in the case of Gauss 3, there are also many differences in the nonlinear estimates obtained from a given data set when different algorithms work under Gauss 5, including some sign changes. There are also some big changes in numerical estimates of parameters, including sign changes, when marginal changes in the dataset, such as the addition or deletion of just one observation, are made. The reader's attention is also drawn to the interesting results obtained using dataset 11 and algorithm 2 , where the addition of four extra observations leads to radically different conclusions concerning nonlinearity than those in Hamilton's example. However, the relatively high statistical significance of \widetilde{g}_{3} is generally maintained across the range of experiments we have conducted.

The algorithm switching procedures were also applied to datasets 1 to 11 , inclusive. While there were a few cases of failure, the general picture to emerge was one of increased efficiency and somewhat improved numerical stability in the final parameter estimates. Detailed results are available on request from the authors.

5. Conclusion

In this paper we have given an account of the new approach to nonlinear econometric modelling proposed by Hamilton (2001) and briefly described some of the methods of nonlinear optimization that may be used in the Gauss computer program provided by Hamilton for the implementation of his methodology. The performance of this program has been investigated using data relating to Hamilton's example concerning the US Phillips curve, two versions of the Gauss software and a range of alternative numerical optimization options, starting values and values for the Gauss parameter _oprteps. The performance of algorithm switching procedures has also been examined. Finally, the effects of changes in the sample data on the results produced by Hamilton's procedure have been explored. The focus has designedly been on the Gauss implementation of the procedure and, while several changes in the Gauss procedures have been investigated, no attempt has been made at modification of Hamilton's methodology per se.

The results we have presented suggest some clear conclusions, which we hope will be of value to those contemplating working with Hamilton's new method. First, different algorithms used for the numerical optimization have different chances of success. Hamilton's choice of the BFGS algorithm fails in over 60
per cent of the cases examined in our study, while the less computationally efficient steepest descent method succeeds in all cases. Secondly, when different algorithms work, they may produce significantly different numerical results and different signs for parameter estimates. Thirdly, the use of procedures that employ two algorithms and a switching criterion appears to produce far more consistent estimates than any one algorithm used on its own. Algorithm switching is also less sensitive to the choice of initial parameter estimates. Fourthly, minor changes in data can have significant effects, both in terms of whether an algorithm operates or not and, in the case of it operating, the numerical results it produces. For example, it is interesting to note that if Hamilton's data had just one less observation at either end of the sample, or one more observation at the end, his version of the program would have failed to produce nonlinear estimates, not only with Gauss 3 but also with Gauss 5 and all of the values of _oprteps used in this study. Moreover, if his dataset had contained the four additional observations for 1998 to 2001 (dataset 11), while the program would have produced results, all three nonlinear parameter estimates would have been significant, in contrast to just \widetilde{g}_{3} as found in his original study (dataset 1). Thus his inferences concerning the form of nonlinearity would also have been different. However, despite the sensitivity of results to choice of algorithm, initial values and data changes, the statistical significance of the nonlinear parameter estimates, hence the inference about the form of nonlinearity, generally seems to be little affected according to the findings that we have reported. Given the on-line availability of Hamilton's program and of the data used, it is a straightforward matter to replicate all of these findings.

The present paper is only a beginning of the work advocated by Hamilton as required to establish the usefulness of his new methodology, and our empirical investigations are continuing. Indeed, the approach used above has already been extended to the implementation of Hamilton's program for his Example 1 and Example 2 [Hamilton (2001, Section 7)]. However, the findings are not discussed here, except to say the indications are that for the simulated data sets used in Examples 1 and 2, the sensitivity of results to choice of algorithm and size of sample is less pronounced than has been found using the real data of Example 3. For the interested reader, some of the results obtained using single algorithms for Examples 1 and 2 are presented in the tables in Appendix C. Further results using alternative start values and the algorithm switching procedures are available from the authors.

It is difficult to say what, precisely, is the cause of the numerical instabil-
ity of the algorithms revealed in this study. However, useful insights into two possibilities are provided by Warnes and Ripley (1987) and Mardia and Watkins (1989). For instance, the likelihood function may be multimodal and the global maximum may not correspond to sensible values of the parameters, or the likelihood function may have a very flat ridge with a number of local maxima [Warnes and Ripley (1987, p. 640 and p. 641)]. Another possibility is that difficulties exist within Hamilton's methodology. For example, as suggested by a referee, the use of alternative covariance functions for specifying the random field regression model may help to reduce numerical instability [see Dahl and Gonzalez-Rivera (2003)], as may different procedures for estimating the parameters of Hamilton's random field regression model, such as the recently proposed two step method of Dahl and Qin (2004), which promises unique identification and good convergence properties. These matters constitute an interesting agenda for future research.

With regard to the implementation of the original Hamilton random field regression methodology, which this paper addresses, our main recommendation is to employ an algorithm switching approach supplemented as necessary by changes of the Gauss _oprteps parameter and the starting value of ζ. On the basis of the evidence provided in this paper such an approach is more efficient than the use of single algorithms and appears to be less susceptible to failure.

References

Bond, D., M.J. Harrison and E.J. O'Brien (2003): "Investigating Nonlinearity: A Note on the Implementation of Hamilton's Methodology", University of Dublin, Trinity Economic Paper No. 12.

Brent, R.P. (1972): "A New Algorithm for Minimizing a Function of Several Variables without Calculating Derivatives"; in Anderssen, R.S., L.S. Jennings and D.M. Ryan. Optimization, Brisbane: University of Queensland Press.

Brent, R.P. (1973): Algorithms for Minimization without Derivatives, Englewood Cliffs, N.J.: Prentice-Hall.

Broyden, C.G. (1967):"Quasi-Newton Methods and their Application to Function Minimization", Mathematics of Computation, 21, 368-381.

Dahl, C.M. (1998): "An Investigation of Tests for Linearity and the Accuracy of Flexible Nonlinear Inference", University of Aarhus, Working Paper.

Dahl, C.M. and G. Gonzalez-Rivera (2003): "Testing for Neglected Nonlinearity in Regression Models based on the Theory of Random Fields", Journal of Econometrics, 114, 141-164.

Dahl, C.M. and Y. Qin (2004): "The Limiting Behavior of the Estimated Parameters in a Misspecified Random Field Regression Model", Purdue University, Working Paper.

Davidon, W.C. (1968): "Variance Algorithms for Minimization", The Computer Journal, 10, 406-410.

Dennis, Jr., J.E. and S.B. Schnabel (1983): Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ: PrenticeHall.

Fletcher, R. (1970): "A New Approach to Variable Metric Algorithms", The Computer Journal, 13, 317-322.

Fletcher, R. and M.J.D. Powell (1963): "A Rapidly Convergent Descent Method for Minimization", The Computer Journal, 6, 163-168.

Goldfarb, D. (1970): "A Family of Variable-Metric Methods Derived by Variational Means", Mathematics of Computation, 24, 23-26.

Greene, W.H. (2003): Econometric Analysis ($5^{\text {th }}$ edn.), Upper Saddle River, N.J.: Pearson Education, Inc.

Hamilton, J.D. (2001): "A Parametric Approach to Flexible Nonlinear Inference", Econometrica, 69, 537-573.

Mardia, K.V. and A.J. Watkins (1989): "On Multimodality of the Likelihood in the Spatial Linear Model", Biometrika, 76, 289-295.

Murray, W. (Ed.) (1972): Numerical Methods for Unconstrained Optimization, London: Academic Press.

Polak, E. and G. Ribiere (1969): "Note Sur la Convergence de Method des Direction Conjugees", University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, Working Paper.

Schoenberg, R. (2001): Optimization, Ch. 2, Gauss Reference Manual, Maple Valley, WA: Aptech Systems, Inc.

Shanno, D.F. (1970): "Conditioning of Quasi-Newton Methods for Function Minimization", Mathematics of Computation, 24, 647-656.

Warnes, J.J. and B.D. Ripley (1987): "Problems with Likelihood Estimation of Covariance Functions of Spatial Gaussian Processes", Biometrika, 74, 640-642.

Wecker, W.E. and C.F. Ansley (1983): "The Signal Extraction Approach to Nonlinear Regression and Spline Smoothing", Journal of the American Statistical Association, 78, 81-89.

－	－	－	－	－	－	－	－	－	лолй рıерие7S		
－	－	－	－	－	－	－	－	－	ұиә！эщәоจ	II	9
L゙t＊ 0	モ6\％＇${ }^{\circ}$	99000	78\％＊0	G9\％ 0	もLで 2 LC	780＊0	820＇0	29100	лолия рлериетS		
L87 ${ }^{\circ}$	$270 \cdot \%$	6700	98ヶ＊0	776．0－	785 ${ }^{\circ} 88^{-}$	$98 \mathrm{~L}^{\circ} 0$	gsto	てゅ！${ }^{0}$	ұиә！эщәоゝ	LI	g
0ガ＊ 0	¢88＇${ }^{\text {I }}$	¢90．0	L¢\％＊0	LSTO	7¢6．97I	L¢0＊0	LLO＇0	891．0			
$0 \ddagger \%^{\circ} \mathrm{L}$	$980{ }^{\circ}$	6700	LEち＇0	676＊0－	872 ＇88 $^{-}$	$985^{\circ} 0$	get 0^{-}	¢モI．0	ұиәээщәоゝ	Ogi	\dagger
－	－	－	－	－	－	－	－	－	лоля рrepueqs		
－	－	－	－	－	－	－	－	－	ұиәээщәо刀	I	ε
L゙も゙0	モ67＇	$990{ }^{\circ} 0$	787\％0	gcio 0	98t＊ 27 I	780\％ 0	820\％ 0	29100			
LE7＇	200%	67000	98ャ＊0	776．0－	787 ${ }^{\text {²8 }}$	$985^{\circ} 0$	csto ${ }^{-}$		ұиә！эщәо刀	87	ζ
cse 0	610＇I	82000	£GZ\％ 0	LEF0	モ¢9 ¢¢	910＊0	L20．0	0もち「0			
LEf＇I	L78 ${ }^{\text {L }}$	080\％	907＊0	¢28＊0－	¢06．［G－	7200	LZI．0	$680^{\circ} 0$	ұиә！эщәо刀	$0 ¢ \mathrm{~L}$	I
${ }_{\sim}^{\circ}$	2	8_{\sim}^{0}	za_{\sim}	${ }_{\sim}^{2}$	$0^{0 x}$	${ }_{\sim}^{¢ 6}$	$\stackrel{7}{\sim}$	$\stackrel{1}{\sim}$		suо！̣¢едәtI	

Table 1：Dataset 1 （Hamilton＇s US Phillips curve data），Gauss 3 results．

067＊0	784＇t	780\％ 0	67t＇0	$887^{\circ} 0$	モ¢T¢9	$670{ }^{\circ} 0$	ELF＇0	$86{ }^{\circ} \mathrm{I}$			
L6干．0	799．t	$880{ }^{\circ}$	899＊0	$67{ }^{\circ} 0^{-}$	\＆60＇LL－	8200^{-}	086.0	097 7^{-}	ұиәюшәор	$0 ¢ 1$	9
LIt＇0	モ6\％${ }^{\text {I }}$	${ }^{9} 900^{\circ} 0$	z¢7＊0	Gctio	890\％ 27 I	28000	8200	291．0			
L\＆6．	$\angle \hbar 0^{\circ} \mathrm{Z}$	$670{ }^{\circ}$	$98 \vdash^{\circ} 0$	776 0^{-}	187＊88－	$985^{\circ} 0^{-}$	¢ctio	6ヵ1．0	ұиә！эщәоด	GI	g
709．0	¢80\％0	$990^{\circ} 0$	988．0	ces 0	L97：80I	707．0	LZ500	$788^{\circ} 0$	лолия рлериетS		
9980	010%	$990{ }^{\circ}$	8Lで0	モ¢9 0^{-}	LtI＇gzi－	Its．0	LEL0	［90＊${ }^{-}$	ұиә！эщәо，	O¢	\pm
－	－	－	－	－	－	－	－	－	лолия рлерие7S		
－	－	－	－	－	－	－	－	－	ұиә！эщәол	I	ε
Ltモ．0	モ67＊	¢90＊0	287\％0	gcio 0	8LİLZI	780＊0	820\％	291．0	лолия р．ерие7S		
L\＆\％＇I	$270 \cdot \square$	$670 \cdot 0$	987＊0	776．0－	887＊ $88{ }^{-}$	985＊0	¢cT：0 ${ }^{-}$	6ヵ10	ұиә！эщə๐ด	87	ζ
78F＊ 0	$877^{\circ} \mathrm{I}$	¢90．0	0¢7＊0	$99{ }^{\circ} 0$	L70．97I	\＆80\％ 0	8200	0210			
9 Cz ［	886.1	$670 \cdot 0$	0もも＂0	2I6．0－	880 $68{ }^{-}$	cet．0 ${ }^{-}$	LSt．0	㛡 ${ }^{\circ} 0$	ұиә！эщə๐ด	O¢ 1	I
$\stackrel{\sim}{\sim}$	2	${ }^{8} \sim$	2^{20}	${ }_{\sim}^{10}$	${ }^{0} \sim$	$\stackrel{8}{\sim}$	$\stackrel{76}{\sim}$	$\stackrel{1}{\sim}$		suоч̣е．̇әұI	

Table 2：Dataset 1 （Hamilton＇s US Phillips curve data），Gauss 5 results，＿oprteps＝0．00001．

［1800	モI6．${ }^{\text {I }}$	［LO＊0	7210	LIE＊	\＆IZ：0才I	$9 \pm 0{ }^{\circ} 0$	¢80\％ 0	79100			
ILLO	TtL $2 \cdot 8$	610．0	207＊ 0	$898{ }^{\circ}{ }^{-}$	781＊87－	LZ\％＊	¢000＊0	$\angle \pm 000$	ұиәฺ̣əәо	$09[$	9
［St0	82900	980＊0	GEI0	$087{ }^{\circ}$	$829^{\circ} 0$	L80＊0	$908^{\circ} 0$	¢98．0	лолı马 рлериетS		
897° T	TGI T	LZ0．0	$099{ }^{\circ}$	ces ${ }^{\circ}$	c\＆E 88^{-}	$780^{\circ}{ }^{-}$	\＆87 ${ }^{-}$	$009^{\circ} 0$	ұшә！эџәор	L	9
－	－	－	－	－	－	－	－	－			
－	－	－	－	－	－	－	－	－	ұиәฺэџəоつ	09 L	Ø
－	－	－	－	－	－	－	－	－	лоля面 рхериетS		
－	－	－	－	－	－	－	－	－	ұшәээщәо力	I	§
－	－	－	－	－	－	－	－	－	лолı示 рлериетS		
－	－	－	－	－	－	－	－	－	ұиә！эщəо刀	$\square 9$	ζ
788．0	$906{ }^{\text { }}$［	$2980{ }^{\circ}$	9LI 0	LEE ${ }^{\circ} 0$	791 $78 \pm$	080＊0	$070 \cdot 0$	LET 0			
$808^{\circ} 0$	$267^{\circ} \mathrm{E}$	LIO．0	$687^{\circ} 0$	¢E8 ${ }^{\circ} 0^{-}$	$987^{\circ} \mathrm{G}^{-}$	07\％${ }^{\circ}$	6－əL20＊	$780{ }^{\circ}{ }^{-}$	ұиә！эџәо○	09 L	I
$\stackrel{0}{\sim}$	2	EX	\square_{\sim}^{0}	${ }_{\sim}^{2}$	$0 \underset{\sim}{\sim}$	$\underbrace{6}_{\sim}$	$\underset{\sim}{6}$	เ \sim_{\sim}^{6}			

Table 3：Dataset 2，Gauss 3 results．

S	OqI	S	0 CI	S	0¢I	S	0¢I	A	OqI	S	Ogi	S	0¢I	\＆	Ogi	S	OSI	S	0¢I	S	O¢I	${ }^{\circ} \mathrm{I}$	
S	0 CI	S	0¢I	H	0¢I	S	0gi	H	OSI	S	0 gI	S	0¢I	S	Ogi	S	0st	S	0¢I	S	0¢I	「0	
S	0¢I	S	0gi	H	0¢I	S	0gI	H	OgI	${ }^{\text {H }}$	Ogi	S	0st	S	0gi	S	0st	S	0¢I	S	0¢t	1000	
S	0¢t	S	ogi	H	0¢t	S	ogi	H	0¢I	${ }^{\text {a }}$	ogi	S	0st	4	88	S	ost	S	$0 ¢ \mathrm{t}$	S	$0 ¢ \mathrm{~L}$	L0000 0	ற९Yd ：9
S	01	S	¢I	S	${ }_{2}$	S	¢I	S	6	S	II	＋	98	S	81	S	8	H	$\varepsilon \tau$	S	¢I	0 －	
S	01	S	¢I	S	\％	S	91	S	6	S	II	${ }^{\text {a }}$	98	S	81	S	8	H	88	S	¢I	［0	
S	01	S	68	S	\％	S	£¢	S	6	S	II	${ }^{\text {a }}$	98	S	81	S	8	H	88	S	¢I	1000	
S	01	H	ogi	S	22	H	09t	S	II	S	II	${ }^{\text {a }}$	98	S	81	S	8	H	88	S	¢I	L0000．0	иотмәл ：¢
S	0¢L	S	0¢I	S	0¢L	S	Ogi	S	681	H	0¢L	S	OSI	A	Ogi	S	「L	S	0¢I	S	O¢t	$0 \cdot \mathrm{~L}$	
S	0gi	S	0gi	S	0gi	S	0¢t	S	OSI	${ }^{\text {H }}$	Ogi	S	0¢t	H	0gt	S	形	S	0¢t	S	OSt	「0	
S	0gi	S	0gi	S	0gi	S	0¢t	S	OSI	${ }^{4}$	Ogt	S	0¢t	H	0gt	S	形	S	0¢t	S	0¢t	1000	
S	$0 ¢ \mathrm{~L}$	S	0¢I	S	0¢I	S	ogi	${ }^{4}$	0¢I	－	ogi	S	OgI	－	ogi	S	㛡	S	0¢I	S	0¢I	L0000\％ 0	deda ：
S	27	H	67	H	99	A	2 c	S	78	${ }^{4}$	09	A	8LI	S	97	S	18	H	9t	S	07	0＇I	
S	27	H	62	H	¢9	${ }^{\text {a }}$	29	H	97	H	09	A	8 LI	S	97	S	18	H	¢t	${ }^{\text {a }}$	20	t．0	
S	2τ	H	62	H	¢9	${ }_{4}$	29	H	09	H	09	＋	8 LL	S	97	S	18	${ }^{4}$	¢t	S	67	1000	
S	27	H	62	H	¢9	H	29	${ }^{\text {a }}$	89	H	09	${ }^{4}$	8 LL	S	97	S	18	a	¢t	S	87	L0000 0	S¢dg ：\％
S	0¢t	S	0¢I	S	0¢t	S	OgI	S	0¢I	S	09L	S	0¢I	S	Ogi	S	OgI	S	0¢t	S	0¢t	$0^{\text {a }}$	
S	0¢i	S	ogi	S	0gi	S	ogi	S	0gi	S	Ogi	S	0gi	S	0gi	S	0gi	S	$0 ¢ \mathrm{~L}$	S	$0 ¢ \mathrm{~L}$	${ }^{\circ} \mathrm{O}$	
S	0¢I	S	OGI	S	OGI	S	osi	S	OgI	S	0gi	S	OSI	S	0gi	S	0¢I	S	0¢I	S	OgI	${ }^{100} 0$	
S	0¢t	S	OGI	S	OgI	S	0 g I	S	ogi	S	0gi	S	0¢t	S	ogt	S	0¢t	S	0¢t	S	0¢t	10000＇0	
																						sdəұ．1do－	
	II		${ }^{1}$		6		8		2		9		c		\dagger		ε		\checkmark		I		${ }_{\text {q．sereg }}$

					 					：ә¢0
9680	9860	6900	gzz\％	¢97＊ 0	006¢¢	ェ¢0\％	L0¢0	86．0	лохия p．repueqs	
¢LE＇I	9¢9＇t	L900	¢9「＂0	¢880－	92L＇ $76{ }^{-}$	cer 0^{-}	L91．0	9¢T．0	ұиә！эџə๐	g．
8680	2060	8900	\＆\％${ }^{\circ}$	997＊ 0	202＇tul	2800	z010	26\％${ }^{\circ}$		
868.1	$609^{\text {I }}$	Lso 0	997＊0	¢18 8^{-}	9LZ＇¢6－	£¢ $\mathrm{I}^{\circ}{ }^{-}$	z910	$8 \mathrm{ST} \mathrm{T}^{\circ}$	ұиә！эшәจ	\ddagger ¢
$668{ }^{\circ}$	2960	0900	Lzz\％	¢97\％	2Iż2il	¢¢00	tor 0	L6．0		
L98．	L69＇I	L900	09ヶ＊0	$\mathrm{I}_{58} \mathrm{O}^{-}$	088 \％6－	981．0－	091．0	玵 ${ }^{\circ}$	ұшәээฆəด	\＆． 1
9980	080＇t	8200	¢¢z\％	$87{ }^{\circ} 0$	¢08¢gI	9100	L200	98.0		
ャで「1	098．t	0¢0\％	キ0ヶ＇0	2280－	£\＆0＇tg	2200	L2İO	880°	ұиә！эщə๐	$z^{\prime} \mathrm{I}$
$6 \mathrm{~m} \%$	$0 \pm 6{ }^{\circ}$	9200	8もで0	モ¢¢ ${ }^{\circ}$	984＇6t	2100	\＆ 200	6tio	лолия prepuras	
02t＇I	902． 1	L800	LIto	2180^{-}	868＊理	22000－	6z［00	$960{ }^{\circ}$	ұиә！эщə๐ด	I＇I
2980	69＇IT	880°	£970	620°	870＇t91	¢100	L200	$88 \mathrm{I}^{\circ}$	лолия prepueqs	
\＆LE＇	980%	880°	068°	2060^{-}	20才．9も－	i200	$88.0{ }^{-}$	2800	ұиә！эщә๐	$0 \cdot \mathrm{I}$
0 cs 0	和6	¢ 200	8もで0	$\varepsilon ¢ \square^{\circ} 0$		2100	\＆ $20^{\circ} 0$	Ltio	．олия p．repueqs	
297＇I	giL＇t	L800	9よゃ0	$6 \ddagger 80^{-}$	モそて＇tg－	22000－	6750	モ60．0	ұшә！эшәо	6.0
zeso	Lez＇t	980°	8970	$97{ }^{\circ} 0$	97＜ 291	$650{ }^{\circ}$	z200	9610	лолия р．repueqs	
モ¢¢ ${ }^{\text {I }}$	860%	280°	9880	L 260^{-}	\＆LZ＇¢\％	［200	\＆zг ${ }^{\circ}$	620°	ұшә！эџәоด	8.0
て¢t．0	9LE＇t	¢9000	¢̇で0	LSt． 0	9 c 9．871	¢¢0 0	880°	和 0	romag p．repueqs	
8 LZ I	201%	6700	\＆¢\％ 0	0860－	L28 288^{-}	98.0	gsto	0tto	ұиә！эщә๐	L．0
モ¢90	869．I	2800	675．0	8\％ 0	0¢T＇¢9	2800	LIz＇I	9880		
$970^{\circ} \mathrm{I}$	986.1	6800	0290	L®＊ 0^{-}		1800	$820{ }^{\circ}{ }^{-}$	L89 ${ }^{\text {I }}$	ұиә！эщəо	9.0
2et 0	$887^{\circ} \mathrm{I}$	t900	0¢7\％	9¢t＇0	280．97I	¢800	820°	0210	．олия р．repueqs	
9gz＇t	$886^{\text {．}}$	670 0	0屯t＇0	216．0－	880＇68－	¢8． 0^{-}	Lsio	顽0	ұшәэџə๐ด	q． 0
Ltw 0	988．	¢9000	¢¢7\％	gat 0	720．881	z800	L2000	¢9\％ 0	．rowe prepueqs	
¢ ¢ \％${ }^{\text {I }}$	$280{ }^{\circ}$	6700		2760 ${ }^{-}$	971－88－	98.0	csio	ゅt！ 0	ұиәэщə๐จ	¢0

L゙も「0	モ67＇	990＊0	787＊0	gst．0	887\％ 27 I	780\％ 0	820．0	L9T．0	лолхя ртериетs		
LE\％I	270%	$670 \cdot 0$	$987^{\circ} 0$	776．0－	［87＊88－	$985^{\circ} 0^{-}$	get．0	でち「0	ұиә！эщə๐ด	¢\％	$\mathrm{g}^{\circ} \mathrm{I}$
LIt．0	モ67＇	¢90＊0	7¢7\％ 0	99\％ 0	¢87＇ 27 L	780\％0	8200	L91．0	лолия р．лериет		
L\＆\％${ }^{\circ}$	270%	$670 \% 0$	9\＆ฑ＊ 0	776 0^{-}	［87＊88－	$985^{\circ} 0^{-}$	gctio	7ヵち「0	ұиә！эщәол	87	$\varepsilon \cdot I$
LIt． 0	モ6\％＇${ }^{\text {I }}$	990\％0	787＊0	gsto	187\％ 27 L	280\％ 0	8200	291．0	лолхя рлериетs		
L\＆\％I	200%	$670 \cdot 0$	987＊ 0	7 760^{-}	787＊ 88^{-}	$98 \mathrm{I}^{\circ} 0$	gct 0^{-}	でち「0	ұиә！эษәоゝ	81	I＇I
LTで0	モ67．${ }^{\text {I }}$	990＊0	787＊0		988．27I	280\％ 0	8200	L9T．0			
LE\％${ }^{\circ}$	270%	$670 \cdot 0$	987＊0	776 0^{-}	－87＊88－	98．0	gct 0^{-}	でち「0	ұиә！̣щəоจ	$\ddagger \square$	6.0
LIt＊0	п62＇L	$990{ }^{\circ} 0$	787＊0	99\％${ }^{\circ}$	077＊ 27 L	78000	$820{ }^{\circ}$	29T＊0			
$\angle \& 7^{\circ} \mathrm{I}$	200%	$670 \cdot 0$	98\％＊ 0	776 0^{-}	L87＊ 88^{-}	$985^{\circ} 0^{-}$	gct 0^{-}	7ヵち「0	ұиә！эщə๐刀	67	L．0
LIt．0	モ6\％＇I	990\％0	787＊0	gsto 0	867＇L7I	280\％ 0	8200	291．0			
L\＆\％I	270%	$670 \cdot 0$	987＊ 0	776．0－	187＊ 88^{-}	98.0	gct 0^{-}	でち「0	ұนә！̣щə๐ด	87	g．0
$\stackrel{\bigcirc}{\sim}$	2	${ }^{\text {® }} \sim$	\sim_{\sim}^{2}	${ }_{\sim}^{10}$	${ }^{00}$	$\stackrel{¢}{\sim}$	$\stackrel{\square}{\sim}$	${ }_{\sim}^{16}$		suọұехәұI	

Table 6：Effect of initial value of ζ ：algorithm switching（Steepest descent／BFGS）

L゙も＊0	モ62＇${ }^{\text {I }}$	990＊0	7¢7＊0	g¢t．0	L88． 27 L	$780 \cdot 0$	82000	L91．0	лола的 ргерие7S		
LE\％${ }^{\circ}$	$270 \cdot \%$	67000	98F＊ 0	7760^{-}	［87＊ 88^{-}	$98 \mathrm{I}^{\circ}{ }^{-}$	gsto	2ヵT＇0	ұиә！эџәоจ	61	Q＇I
L゙も゙0	モ67＇${ }^{\text {I }}$	99000	787＊0	gcta 0	GLZ＇LZI	280．0	8200	291．0	лолая рлерие7S		
L8\％ 7°	$270 \cdot \%$	$670{ }^{\circ} 0$	$987^{\circ} 0$	776 0^{-}	787＊ 88^{-}	$981^{\circ} 0^{-}$	gst．0	てセ1．0	ұиә！̣щə๐ゝ	๖®	\mathcal{E}^{\prime} I
Lもも 0	モ67．	99000	787＊0	gctio	8L9 27 I	780．0	8200	291．0	лоля号 рлерие7S		
L\＆\％${ }^{\circ}$	2700°	$670{ }^{\circ}$	$98 \square^{\circ} 0$	7760^{-}	787＊ 88^{-}	$985^{\circ} 0$	GSI．0	でI「0	ұиә！̣щə๐	II	［＇I
LIt「0	モ62＇	¢90＊0	787＊0	gcto 0	T28．97I	780．0	8200	L91．0			
LE\％${ }^{\circ}$	$270 \cdot \%$	67000	$98 \mathrm{~F}^{\circ} 0$	776．0－	787＊ 88^{-}	$985^{\circ} 0$	gct 0^{-}	てゅI＇0	ұиә！эщәол	L\％	6.0
Ltifo	モ67＇	99000	787＊0	Scto 0	861 27 L	280．0	8200	29100	лолая рлерие7S		
L\＆\％ 7°	$270 \cdot \%$	$670{ }^{\circ} 0$	$987^{\circ} 0$	7 76.0^{-}	787＊ 88^{-}	$985^{\circ} 0^{-}$	Gct 0^{-}	で1．0	ұ廿ә！̣щə๐ด	96	2.0
LIt．0	モ67＇${ }^{\text {I }}$	990\％ 0	787＊0	gcto 0	LLE L 271	780．0	8200	L91．0	лолля р．лерие7S		
L¢\％${ }^{\circ}$	$270 \cdot \%$	67000	$98 \mathrm{~F}^{\circ} 0$	776．0－	［87＊ 88^{-}	$985^{\circ} 0$	gct 0^{-}	で1．0	ұиә！эщə๐จ	87	9．0
$\stackrel{\sim}{\sim}$	2	8_{\sim}^{0}	\square_{2}	${ }_{\sim}^{10}$	00	$\stackrel{86}{\sim}$	$\stackrel{76}{\sim}$	$\stackrel{16}{\sim}$		suo！qe．əəұI	¢ јо әпгел โечи！

Table 7：Effect of initial value of ζ ：algorithm switching（Steepest descent／Newton）．

Appendix A

Summary of Gauss 5 Results.

Coefficient Estimates				\widetilde{g}_{1}	\widetilde{g}_{2}	\widetilde{g}_{3}	$\widetilde{\alpha}_{0}$	$\widetilde{\alpha}_{1}$	$\widetilde{\alpha}_{2}$	$\widetilde{\alpha}_{3}$	$\widetilde{\zeta}$	$\widetilde{\sigma}$
Algorithm	_oprteps	Iterations										
1: Steepest Descent*	0.00001	150	Coefficient	0.144	0.157	-0.135	-89.083	-0.912	0.440	0.049	1.988	1.256
			Standard Error	0.170	0.078	0.033	126.027	0.456	0.230	0.064	1.228	0.432
2: BFGS	0.00001	28	Coefficient	0.142	-0.155	0.136	-88.483	-0.922	0.436	0.049	2.047	1.237
			Standard Error	0.167	0.078	0.032	127.113	0.455	0.232	0.065	1.294	0.441
	0.001	29	Coefficient	0.142	-0.155	0.136	-88.482	-0.922	0.436	0.049	2.047	0.441
			Standard Error	0.167	0.078	0.032	127.193	0.455	0.232	0.065	1.294	0.441
	0.1	47	Coefficient	-	-	-	-	-	-	-	-	-
			Standard Error	-	-	-	-	-	-	-	-	-
	1.0	20	Coefficient	0.142	-0.155	0.136	-88.482	-0.922	0.436	0.049	2.047	1.237
			Standard Error	0.167	0.078	0.032	127.353	0.455	0.232	0.065	1.294	0.441
3: BFGS-SC*	0.00001	1	Coefficient	-	-	-	-	-	-	-	-	-
			Standard Error	-	-	-	-	-	-	-	-	-
4: DFP	0.00001	150	Coefficient	-0.051	0.131	0.541	-123.141	-0.654	0.418	0.066	7.010	0.365
			Standard Error	0.382	0.127	0.202	108.257	0.335	0.336	0.056	10.033	0.502
	0.001	150	Coefficient	-0.009	0.175	0.540	-111.722	-0.671	0.489	0.060	8.410	0.302
			Standard Error	0.360	0.081	0.134	87.365	0.321	0.199	0.045	15.513	0.545
	0.1	150	Coefficient	-0.005	0.150	0.559	-114.967	-0.650	0.462	0.0613	5.559	0.450
			Standard Error	0.359	0.086	0.178	90.850	0.334	0.227	0.047	6.615	0.508
	1.0	150	Coefficient	-	-	-	-	-	-	-	-	-
			Standard Error	-	-	-	-	-	-	-	-	-
5: Newton*	0.00001	15	Coefficient	0.142	-0.155	-0.136	-88.481	-0.922	0.436	0.049	2.047	1.237
			Standard Error	0.167	0.078	0.032	127.058	0.455	0.232	0.065	1.294	0.441
6: PRCG*	0.00001	150	Coefficient	-2.260	0.930	-0.078	-71.093	-0.429	0.668	0.038	4.562	0.491
			Standard Error	1.198	0.473	0.029	63.154	0.288	0.129	0.032	4.782	0.490

Appendix B

Detailed results, Gauss $\mathbf{3}$ \& 5, for all datasets.

LTE 0	$789 \cdot 91$	L2000	LET＇0	187：0	7\％0＊L¢	980＊0	$870^{\circ} 0$	LIL＊ 0	лолия рлерие7S			
TLZ\％	296．IL	9100	\＆¢ ${ }^{\circ} 0$	868 0^{-}	9L9 ${ }^{\circ} 8^{-}$	LZ7．0	g－a $210{ }^{\circ} \mathrm{Z}$	780 ${ }^{-}$	ұиә！эџәоゝ	OSI	$0^{\circ} \mathrm{I}$	
LzE＊ 0	$90{ }^{\circ} \mathrm{C}$	9200	¢tio	$688{ }^{\circ}$	0¢0＇09L	玨00	0¢0＇0	$60{ }^{\circ} 0$				
LLT＊ 0	002．9	LLO．0	ZLI＇0	988＊0－	\＆II＇もて－	LZて＇0	$\mathrm{g}-2066^{\circ} \mathrm{G}$	L¥0＇0－	ұиә！эџәоゝ	OST	［ ${ }^{0}$	
$978{ }^{\circ}$	L88＊${ }^{\text {\％}}$	DLOO	でし「0	888.0	8L9．97I	L20＊0	IE0＇0	901．0				
187＊0	$689^{\circ} 9$	LLOO	\＆LI＇0	188 0^{-}	L97＊もて－	z7\％＊0	$9-$－ 2902	7®0＇0－	ұиә！эщәоゝ	Ogi	L00 0	
968．0	769 ${ }^{\text {T }}$	$920{ }^{\circ}$	¢tし ${ }^{\circ}$	$688{ }^{\circ}$	891．6］	L20．0	I¢000	L01．0	лоля年 рлериетs			
L67．0	LOf＇9	2L0．0	DLI．0	¢88 0^{-}	L $\% 8^{\circ} \downarrow \square^{-}$	z7\％＊0	G－əも¢\＆ 9	¢ 500^{-}	ұиә！эщәоゝ	OSI	L0000 ${ }^{\circ}$	ற：OYd ：9
－	－	－	－	－	－	－	－	－	лоля号 рлериетs			
－	－	－	－	－	－	－	－	－	ұиәээょәо	8%	L0000＊ 0	
0z9．0	97I＇z99\％	090＊0	085＊0	7280	grs． 26	¢60＊0	$090 \cdot 0$	モெ $\% 0$	лоля号 рлериетs			
7\％0＊0	896 ¢IL	8800°	LGZ＇0	809 ${ }^{-}$	¢T6 299^{-}	LIṫ0	L00\％ 0	LIL＊	ұиәээщәоゝ	0 g I	L0000 ${ }^{\circ}$	
－	－		－	－	－	－	－	－	лоля鸡 рrериет			
－	－	－	－	－	－	－	－	－	ұиәэ甲щәоゝ	I	L0000 0	
－	－	－	－	－	－	－	－	－				
－	－	－	－	－	－	－	－	－	ұиә！эщə๐刀	$9 \pm$	L0000 ${ }^{\circ}$	＊SDEG ：
9980	¢¢9．	$990 \cdot 0$	モ6 ${ }^{\circ} 0$	29800	モ67．0¢L	780\％	モt0 0	¢¢50				
$768{ }^{\circ}$	LIO\＆	L2000	997\％ 0	9080^{-}	勍 $9 \mathrm{C}^{-}$	L $77^{\circ} 0$	0 $\mathrm{I}_{-\partial \mathrm{C}} 96{ }^{\text {I }}$ I	$660 \cdot 0$	ұиәээџәоจ	$0 ¢ \mathrm{~L}$	L0000＊ 0	
										suo！̣еләұI	sdəұıdo－	шчұب๐оя ${ }_{\text {IV }}$
$\stackrel{\sim}{\sim}$	2	8_{\sim}^{\sim}	\square_{\sim}^{20}	LD	00	$\stackrel{86}{\sim}$	$\stackrel{76}{\sim}$	$\stackrel{16}{\sim}$				

Table B1：Dataset 2，Gauss 5 results．

$968{ }^{\circ} 0$	g78．I	72000	08\％${ }^{\circ} 0$	$97 \square^{\circ} 0$	88t．iti	980\％ 0	モ¢0＊0	\＆゙1．0	roxig prepueas			
990 L	z08． 7	69000	297＊0	626＊0－	モ98：601－	LEL＇0	7000 ${ }^{-}$	¢LI\％	ұиәээшәоэ	0 g I	$0 \cdot \mathrm{~L}$	
ZLS．0	099＇z	GLOO	$\varepsilon 亡 Z \% 0$	8970	$0 ⿰ 6.8$ I	980\％	880\％	¢¢T0	лолй рхерие7S			
LE0＇${ }^{\text {I }}$	\＆Lİ 7	$890^{\circ} 0$	gctio	001．0－	891．901－	LEL＇0	$9000{ }^{-}$	20100	ұиәээџәоゝ	OgI	［＇0	
079．0	209%	92000	¢LZ\％	LLE＇0	7п9＊6ヵI	¢80\％	8¢0 0	¢¢T0	лолы马 рлерие7S			
$670{ }^{\text { }}$	L87 ${ }^{\text {¢ }}$	$890^{\circ} 0$	GGF＊0	000＊${ }^{-}$	$670{ }^{\circ} 9$ I－$^{-}$	281．0 ${ }^{-}$	8000 ${ }^{-}$	20100	ұиәээшәоゝ	$0 ¢ \mathrm{I}$	L00＊0	
9888°	992．I	L20＇0	LLI＇0	LSto	gLz＇0才I	LIEOO	𤣩¢0\％	9ヵ1．0	лолй рлерие7S			
020＇	ZLZ： 7	69000	$02 \downarrow^{\circ} 0$	L26．0－	086 601－	98．0	モ000．0	6LI．0	ұиәээщәоゝ	O¢t	10000 0	ĐDYd ：9
$682^{\circ} 0$	¢99 ¢	Lヵ000	0¢7\％	T\＆8．0	¢8008	6200	801．0	てワで0				
\％¢2．0	902． 7	モ¢000	¢t¢ 0	7п9 0^{-}	887＊00 ${ }^{-}$	LLも0	9－9¢68＊${ }^{\circ}$	$66 z^{\circ} 0$	ұиәээщәоゝ	8	L0000＊0	
762．0	$989{ }^{\circ} \mathrm{E}$	Lヵ000	L¢7．0	188：0	060：08	6200	Llı0	てワで0	лол的 рхерие7S			
Lg $2^{\circ} 0$	0TL 2	モ¢0 0	¢t¢ 0°	7ヵ9 0^{-}	LIt．00I－	LL®＇0	9－ac6 $9^{\circ} \mathrm{L}$	$867^{\circ} 0$	ұиә！эщәоゝ	®2	L0000 0	＊ d d¢
－	－	－	－	－	－	－	－	－				
－	－	－	－	－	－	－	－	－		I	10000 0	＊OS－SఅАя ：¢
L62．0	$929{ }^{\circ} \mathrm{E}$	Lヵ0 0	L¢7\％ 0	TE\＆：0	690\％08	6200	モ01．0	てワで0	лолй рлерие7S			
Z¢LO	802 7	モ¢000	\＆®G＇0	で9＊0－	$68 \pm{ }^{\circ} 0$ I－$^{-}$	TLİ0	$9^{-2869}{ }^{\text { }}$－	$867{ }^{\circ}{ }^{-}$	ұшәээщәоゝ	IE	L0000＊0	＊SヤHg ：
9¢7\％	822．0	$890^{\circ} 0$	でち「0	z¢t0	モ6z＇tu	2800	$680{ }^{\circ}$	28100	лолй р．лерие7S			
もIZ＇I	789 ${ }^{\text {a }}$	¢9000	ち¢9．0	298．0 ${ }^{-}$	切6［5－	¢tt＇0	6 －əgli＇t－	LLI＇0	ұиә！̣щəор	O¢I	L0000 0	
										suo！̣pe．əәI	sdəұ．ıdo－	
$\stackrel{ }{\sim}$	2	${ }^{8} \mathrm{D}$	z_{\sim}	${ }_{\sim}^{10}$	$0 \times$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\chi_{\sim}^{6}}{\sim}$	$\stackrel{1}{\sim}$				

Table B2：Dataset 3，Gauss 5 results．

－	－	－	－	－	－	－	－	－	лоля䧃 рхриет			
－	－	－	－	－	－	－	－	－	ұиә！эษәоゝ	O¢t	$0 \cdot \mathrm{I}$	
LLEO	1067	280\％0	8LI＇0	697\％	L¢7＇¢9	L90．0	689．0	$869^{\circ} 0$				
\＆LC．0	972．8	モ¢0\％	LGL\％	\＆Lキ 0^{-}	7¢ 4 ¢0I－	¢80．0	061＇I	997＊${ }^{\text {－}}$	ұиәээщәо	O¢I	${ }^{\circ} 0$	
¢98．0	6798	780\％	8LI．0	897°	908：79	L90\％	8LG．0	789＊0	лоля号 рлериетs			
0¢ $\mathrm{F}^{\circ} 0$	ELZ＇t	モ¢000	LG2．0	モLI＇0－	008＇701－	280 0^{-}	\＆L［＇I	Iticit	ұиәээшәо	O9I	L00＊0	
－	－	－	－	－	－	－	－	－	лоля号 рлериет			
－	－	－	－	－	－	－	－	－	ұиә！эщәоゝ	88	L0000＊0	ゆ：pud ：9
929．0	0zre9	$980{ }^{\circ} 0$	E91＊0	LL®＊ 0	627．99］	LI0．0	もп0．0	7Z\％．0	лоля楽 рлериет			
GLGO	¢90 ¢	901\％0	L68．0	L66．0－	971＇t07－	$87 \mathrm{I}^{\circ} 0$	680\％	LE $\square^{\circ} 0$	ұиә！эщə๐刀	8I	10000＊0	$*^{\text {UOZ }}$ ¢ ${ }^{\text {N }}$ ：G
－	－	－	－	－	－	－	－	－	лоли楽 рrepueqs			
－	－	－	－	－	－	－	－	－	ұиәээшәо	O¢I	L0000＊ 0	＊ d （fa ：
－	－	－	－	－	－	－	－	－	лолия рrериет			
－	－	－	－	－	－	－	－	－	ұиәээшәо	I	L0000＊ 0	＊PS－SDAg ：
モ68＊0	L88．09E8	970\％0	z¢T＊0	$678 \cdot 0$	L0\％ 68	± 90.0	¢01．0	LIZ＇0	лоля号 рrepueqs			
๖70 0	$670 \cdot 76$	G20＇0	Stio	モ19＊0－	マてฑ゙てぃI－	$89^{\circ} 0$	${ }^{9-2}$ LLİ $^{-}{ }^{-}$	187\％0	ұиә！̣щəоэ	97	L0000＊0	＊Sヤ．89 ：
$687^{\circ} 0$	モ89 ${ }^{\text {I }}$	82000	¢tI「0	もで゚0	¢68¢¢	Lzo．0	LZI＇0	0ZI＇0				
028＊0	L66． 7	L01．0	$807^{\circ} 0$	800 ${ }^{\text {［ }}{ }^{-}$	872 ²I $^{\text {－}}$	781．0－	8－ətIİを	$90{ }^{\circ} 0$	ұиәээщәоゝ	OSI	L0000 0	
										suọqе．әәт	sdəұı．${ }^{\text {do－}}$	
$\stackrel{0}{\sim}$	2	8_{\sim}^{0}	\sim_{\sim}^{2}	${ }^{10} \sim$	${ }^{00}$	$\stackrel{¢}{\sim}$	$\stackrel{7}{\sim}$	$\stackrel{1}{\sim}$				

Table B3：Dataset 4，Gauss 5 results．

EGF＊ 0	ZEE ${ }^{\circ}$	¢90\％0	¢z7\％0	$68 \square^{\circ} 0$	066． 27 I	28000	L200	891．0	лоля号 рлериетS			
$9 \mathrm{LZ} \cdot \mathrm{L}$	680%	\＆2000	98ャ＊0	866．0－	モп0．98I－	0ヵ！${ }^{\circ}{ }^{-}$	gct．0	z9．0－	ұиә！эщəоจ	$0 ¢ \mathrm{I}$	$0 \cdot \mathrm{I}$	
9090	¢0¢ ${ }^{\circ}$	L20＇0	てฑで0	LSt＇0	¢zて＇6eI	9700	9200	$9 \mathrm{t}{ }^{\circ} 0$				
020 ${ }^{\text {I }}$	$9 t 9^{\circ}$	\＆2000	てしだ0	7S0 ${ }^{\text {－}}$	ZLI＇GEI－	てワI＇0－	$6 \mathrm{LT}{ }^{\circ} 0$	¢も1．0－	ұиә！эщəор	O9I	${ }^{\circ} 0$	
809．0	モ89．${ }^{\text {I }}$	$890 \cdot 0$	2¢7＊0	Eti＊ 0	$98 \mathrm{t}^{\circ} \mathrm{EEL}$	モ¢000	9200	LST00	лол木年 рлериет			
git＇t	LLZ＇Z	\＆2000	ちてヤ＊0	\＆ $80 \cdot{ }^{-}$	crc：cel－	LもI．0－	z¢t．0	Lti．0－	ұиә！эщәо刀	Ogi	L00＊0	
Ota 0	068 ${ }^{\text {I }}$	690＊0	9¢7＊0	9 ¢® 0	072：cel	2¢0\％0	9200	¢GL．0				
git＇t	$92 \varepsilon^{\prime} \mathrm{Z}$	\＆20＇0	6Iだ0	¢80 ${ }^{\text {L }}$	LLE＇GEI－	てヵ100－	LSt．0	97t＇0－	ұиә！эщәол	O¢T	L0000＊0	D：PYd ：9
－	－	－	－	－	－	－	－	－				
－	－	－	－	－	－	－	－	－	ұиәюэщәоฎ	98	L0000 0	
－	－	－	－	－	－	－	－	－	лолй рлериет			
－	－	－	－	－	－	－	－	－	ұиәээәоつ	$0 ¢ 1$	L0000＊0	＊ d （f（ ：
－	－	－	－	－	－	－	－	－	лолй рлериет			
－	－	－	－	－	－	－	－	－	ұиә！̣щəо	I	L0000＊0	＊PS－SDHG ：
－	－	－	－	－	－	－	－	－	лолй рлериет			
－	－	－	－	－	－	－	－	－	ұиәээәәо	8LI		
¢7\％ 0	¢7I＇I	¢90＊0	LIZ＇0	0t币＇0	ģzeqz	880\％	080 0	08t＇0				
087＇ L	798．	\＆2000		¢96．0 ${ }^{-}$	8T¢．98L－	0も！ 0^{-}	89.10^{-}	LSt＇0	ұиәэ甲шәоจ	O¢ 1	L0000＊0	
										suo！̣еләұI	sdəұ．ıdo ${ }^{-}$	шบว！̣os ${ }_{\text {IV }}$
$\stackrel{ }{\sim}$	2	${ }^{8} \mathrm{D}$	2_{\sim}^{\sim}	${ }_{\sim}^{10}$	00	¢ \sim_{\sim}^{6}	$\stackrel{76}{\sim}$	$\stackrel{1}{\sim}$				

Table B4：Dataset 5，Gauss 5 results．

¢ST＊ 0	887＇I	9900	z7\％\％	LIt 0	297：08I	モ¢00	1800	LLİ0			$0{ }^{\text {a }}$	
$627^{\circ} \mathrm{T}$	968.1	2200	LEF＇0	0660－	L¢\％ ¢tt $^{-}$	しt「0－	モ¢ ${ }^{\circ} 0$	L¢ Co^{-}	ұиәэщə๐	0gI		
¢ST＊ 0	6z7＇I	9900	\＆z7\％	Ltぁ＇0	ゅ¢ ${ }^{\circ} \mathrm{O} \mathrm{\varepsilon L}$	モ¢0 0	180°	L2I\％				
$8 L z^{\circ} \mathrm{I}$	268．I	2200	LEt＇0	0660－	¢もで¢tI－	ゅtio ${ }^{-}$	モ¢ ${ }^{\circ} 0$	Lgio ${ }^{-}$	ұиәэษә๐	ogi	ז＇0	
－	－	－	－	－	－	－	－	－	лолия p．repueqS			
－	－	－	－	－	－	－	－	－	ұиәэщәоด	ogi	$100{ }^{\circ}$	
－	－	－	－	－	－	－	－	－	ло．ug prepueqS			
－	－	－	－	－	－	－	－	－	ұиәэщәоด	O¢I	10000 ${ }^{\circ}$	Ю〇¢¢ ：9
¢St＇0	$887^{\circ} \mathrm{I}$	$990{ }^{\circ}$	¢z7\％	Lゅぁ＇0	$688^{\circ} 08 \mathrm{~L}$	モ¢000	1800	L2İ0	ло．ut prepur \％$^{\text {a }}$			
$627^{\circ} \mathrm{I}$	968.1	L2000	LEt＇0	066．0－	¢яz＇¢tt－	Ltio	モ¢ ${ }^{\circ} 0$	¢¢1．0	ұиәэџə๐ด	II	10000 ${ }^{\circ}$	
－	－	－	－	－	－	－	－	－	ло．ut prepur \％$^{\text {S }}$			
－	－	－	－	－	－	－	－	－	ұนәэџə๐	ogt	10000 0	＊dAd ：
－	－	－	－	－	－	－	－	－				
－	－	－	－	－	－	－	－	－	ұиәэџə๐ด	I	10000 0	＊OS－SD4d ：8
－	－	－	－	－	－	－	－	－	лолия p．repures			
－	－	－	－	－	－	－	－	－	ұЧәэџә๐ด	09	10000 0	
${ }^{60 \mathrm{E}}{ }^{\circ} 0$	80z＇I	9900	zz70	Lit＇0	98¢ 67I	モ¢00	1800	621．0	ло．ut prepur \％$^{\text {S }}$			
987^{\prime} I	¢ 28.1	2200	88t 0	2860^{-}		Ltio	csio ${ }^{-}$	tgio	ұนәэษว๐	0gt	10000 0	
										suọ冖perəұ	sdəұıİ ${ }^{-}$	
$\stackrel{\sim}{\sim}$	2	ε_{\sim}^{0}	${ }^{2}$	${ }_{\sim}^{\text {LD }}$	${ }^{00}$	$\stackrel{\varepsilon}{\sim}$	$\stackrel{76}{\sim}$	$\stackrel{16}{\sim}$				

Table B5：Dataset 6，Gauss 5 results．

－	－	－	－	－	－	－	－	－	лоля рхериет			
－	－	－	－	－	－	－	－	－	ұиә！эщәо刀	09 L	L0000＊0	＊ DOY ：9
$\varepsilon \pm \nabla^{\circ} 0$	Z\％I＇I	$890 \cdot 0$	LZZ＊0	$09 \square^{\circ} 0$	LET $¢ 81$	c800	$780 \cdot 0$	$86{ }^{\circ} 0$	лоля楽 рхериетS			
も $7 \mathcal{E}^{\cdot}$ I	GLL＇I	$860{ }^{\circ}$	9\％7＊ 0	\＆L0＇T－	706．72L－	\＆7．${ }^{\circ}$	791．0	$69 \mathrm{~L}^{\circ} 0$	ұиә！эщəо○	6	L00＊0	
ETD＊ 0	Z\％I＇I	$890{ }^{\circ}$	LZ\％＊ 0	OSD＊ 0	LET $8 ¢ 5$	980\％	780．0	86100	лоля哣 рлерие7S			
も $\% \mathcal{E}^{\cdot}$ I	GLL＇I	$860^{\circ} 0$	9\％7＊ 0	\＆L0＇T－	706 $72 \mathrm{~L}^{-}$	\＆71．0	7910	$69 \mathrm{I}^{\circ} 0$	ұиә！эщəо○	II	L0000＊0	UOZMəN： G
\＆゙す＊ 0	\＆ZI＇I	$890 \cdot 0$	LZて＊0	09t\％ 0	L98．78L	c800	780．0	$861^{\circ} 0$	лоля楽 рхерие7S			
も $7 ¢^{\circ} \mathrm{I}$	9LL＇L	860 0	GZだ0	\＆L0＊${ }^{-}$	706．才LI ${ }^{-}$	\＆゙100	791．0－	69.0	ұиә！̣щəо刀	68 L	$0 \cdot \mathrm{~L}$	
LEC＇0	\＆G601	9900	$9 \angle Z^{\circ} 0$	72E 0	\＆ $788^{\circ} \mathrm{GZT}$	087＊ 0	$860{ }^{\circ}$	$998^{\circ} 0$	лоля рлериет			
$998^{\circ} 0$	L20\％	L010	6咗0	0810 ${ }^{-}$	872． 76 I $^{-}$	9990	LET 0^{-}	9150－	ұиә！эщəор	09 L	I 0	
8TG．0	L60．9I	7G0．0	\＆\＆\％ 0	$088^{\circ} 0$	\＆79＊00	$887^{\circ} 0$	$60{ }^{\circ} 0$	LLE 0	лоля楽 рхерие7S			
L67．0	¢0¢ 8	$860 \cdot 0$	\＆L®＇0	189 0^{-}	LLI＇L8I－	789 0	760 ${ }^{-}$	86［ ${ }^{\circ}{ }^{-}$	ұиә！эщəо○	09I	L00＊0	
－	－	－	－	－	－	－	－	－	лоля哣 рлерие7S			
－	－	－	－	－	－	－	－	－	ұиә！̣џəоつ	09 L	L0000 0	dя才 ：
－	－	－	－	－	－	－	－	－	лолх楽 рлерие7S			
－	－	－	－	－	－	－	－	－	ұиә！эџәор	I	L0000＊0	＊DS－SDHg ：$¢$
切 0	\＆ZL＇I	$690^{\circ} 0$	LZ\％ 0	097＊ 0	986\％ 78 L	G80\％	780 0	$861^{\circ} 0$				
Ə $\% \mathcal{E}^{\cdot}$ I	GLL＇I	\＆60 0	GZ7＊ 0	\＆L0＊${ }^{-}$	706 TLI $^{-}$	\＆710	7SI 0^{-}	69.0	ұиә！эџәор	7¢	$0^{\circ} \mathrm{I}$	
－	－	－	－	－	－	－	－	－	лоля身 рлерие7S			
－	－	－	－	－	－	－	－	－	ұиә！̣サəо○	97	［ 0	
－	－	－	－	－	－	－	－	－	лоля楽 рхерие7S			
－	－	－	－	－	－	－	－	－	ұиәээщәоจ	09	L00＊0	
－	－	－	－	－	－	－	－	－	лолх楽 рлериетS			
－	－	－	－	－	－	－	－	－	ұиә！эщəо○	79	L0000 0	SD®G：
997＊ 0	897° I	$690 \cdot 0$	$976{ }^{\circ} 0$	0970 0	961＊98L	7E0 0	E80 0	$68 \mathrm{~L}^{\circ} 0$				
\＆87＇${ }^{\circ}$	$688{ }^{\text {I }}$	$860{ }^{\circ} 0$	8L゙゚ 0	780＊${ }^{-}$	$688{ }^{\text {TL }}{ }^{-}$	$\varepsilon \pm L^{\circ} 0$	$09 \mathrm{~T}^{\circ} 0$	gct．0	ұиә！эџəо○	09 L	L0000 0	
										suo！̣ヤrәәт	sdəұ．ıdo ${ }^{-}$	шчұ！．．．\％${ }^{\text {IV }}$
$\underset{\sim}{0}$	2	$\varepsilon_{\sim}^{\chi O}$	χ_{\sim}^{\sim}	ID	$0 \underset{\sim}{0}$	\＆\sim_{\sim}^{\sim}	$\underset{\sim}{6}$	${ }_{\sim}^{\text {L }}$（				

Table B6：Dataset 7，Gauss 5 results．

LGT＇t	066.9	$780{ }^{\circ}$	888．0	609＊0	806．09I	¢ 200	0tio 0	z¢5．0				
086.0	$67 \% \cdot 8$	\＆¢0＇0	7 78.0	$670^{\circ} \mathrm{T}^{-}$	Giticg－	モ\＆${ }^{\circ} 0^{-}$	2800	LII．0	ұиә！эщәол	$0 ¢ \mathrm{I}$	L0000 ${ }^{\circ}$	＊ ＇〇Y 9
\＆LE＊	$887^{\circ} \mathrm{I}$	$9860{ }^{\circ}$	197\％ 0		979＇t6I	910\％	6900	6 LI 0	лоля рлериет			
9 E ¢ I	Lİ＇Z	LIO\％	968．0	968＊0－	960 ¢t－	L20＊0－	モIt．0	$980 \cdot 0$	ұиә！эщәол	¢I	$0 \cdot \mathrm{I}$	
7LE＊	L8\％${ }^{\text {I }}$	¢8000	197\％ 0	8Tた 0	LIL＇t9I	910\％	$690{ }^{\circ}$	8 tI 0	лоля号 рлерие7S			
$9 \mathrm{I} \varepsilon^{\circ} \mathrm{I}$	LIz＇Z	L100	968＊0	9680^{-}	960＇もL－	L20．0	モLI．0	980＇0－	ұиә！эщə๐ด	9I	［ ${ }^{0}$	
ZST＊0	L88．	¢9000	9¢7\％	967＊	Lz9＊9zI	$680{ }^{\circ}$	7800	$\angle L I \cdot 0$				
z07＇I	98L＇z	モ¢0\％	\＆G¢ ${ }^{\circ}$	928．0 ${ }^{-}$	¢ヵで09－	$885^{\circ} 0$	8tio	モSt．0	ұиә！эщə๐ด	モ¢L	L00＊0	
－	－	－	－	－	－	－	－	－				
－	－	－	－	－	－	－	－	－	ұиә！эщәор	$0 ¢ \mathrm{I}$	L0000 ${ }^{\circ}$	uоұмәл ：$¢$
9270	628\％ 27	¢¢0 0	0tt ${ }^{\text {co }}$	ع0¢ 0	0¢0＇99	$890{ }^{\circ}$	907%	LLO．${ }^{\text {I }}$				
007．0	Lz9 ${ }^{\text {IL }}$	¢ $880^{\circ} 0$	LG9＊0	898．0－	モ08＊09－	gitio	EST＊	\＆L0 7^{-}	ұиә！эщәор	OGI	L0000 0	
－	－	－	－	－	－	－	－	－	лоля詸 рлерие7S			
－	－	－	－	－	－	－	－	－	ұиә！эщәоด	I	L0000＊ 0	＊PS－SヤHG ：
－	－	－	－	－	－	－	－	－	лоля рлерие7S			
－	－	－	－	－	－	－	－	－	ұиәюшәол	$\angle 9$	L0000 ${ }^{\circ}$	＊Sヤ．g＇：
9tE\％	876.0	T20＇0	¢ঢて．0	LST＊ 0	\＆L9．9历I	gi0 0	690.0	LTI．0				
ZSt＇I	EtL＇I	LLIO 0	LEちゃ0	モI8＊0－	LIL 27^{-}	220 0	072．0 ${ }^{-}$	LOT．0	ұиә！эщәор	$0 ¢ \mathrm{I}$	L0000 0	
										suo！qe．əәұI	sdəұ．ıdo－	
$\stackrel{\sim}{\sim}$	2	8_{\sim}^{0}	z_{\sim}^{0}	ID	${ }^{00}$	$\stackrel{8}{\sim}$	$\stackrel{76}{\sim}$	$\stackrel{\text { LV }}{\sim}$				sәұеш！̣яя

Table B7：Dataset 8，Gauss 5 results．

¢88．0	967^{*} I	$960{ }^{\circ}$	897\％ 0	68\％ 0	096．98I	モL0．0	L90＇0	601．0	лоля号 рлерие7S			
$987^{\circ} \mathrm{I}$	ZLも ${ }^{\text {\％}}$	¢L0．0	$828^{\circ} 0$	986．0－	キ0¢9 9－	L20．0	¢Lİ0－	180＊0	ұиә！̣щəо๐	$0 ¢ 1$	$0 \cdot \mathrm{I}$	
－	－	－	－	－	－	－	－	－	лоля保 рлерие7S			
－	－	－	－	－	－	－	－	－	ұиә！эщəо๐	O¢L	［．0	
－	－	－	－	－	－	－	－	－				
－	－	－	－	－	－	－	－	－	ұиәээщәоจ	091	L0000 0	றpYd ：9
7980	DLZ ${ }^{\text {I }}$	G20．0	69\％＇0	98\％ 0	$289^{\circ} 201$	9100	$290{ }^{\circ}$	もLI．0	лоля䛧 ргррие7S			
$06 z^{\circ}$ I	\＆cz \％	モL0．0	L68＊0	モ06 0^{-}	086．65－	L20＇0－	911．0－	$980^{\circ} 0$	ұиә！эщәоจ	77	L0000＊0	$*^{\text {UOqM }}$（ ${ }^{\text {¢ }}$
$009^{\circ} 0$	L99＇tL	\＆¢0 0	$885^{\circ} 0$	L08：0	72I＇t9	¢900	791．0	0280	лоли号 рлерие7S			
97100	979＊8L	\＆¢0 0	$979^{\circ} 0$	¢98 ${ }^{-}$	モLZ＊T9－	7Z1．0－	9 9t＊ 0	$6 \mathrm{~L} 8^{\circ} \mathrm{I}$	ұиә！эщәоจ	091	L0000＊ 0	＊ dAC ：
－	－	－	－	－	－	－	－	－	лоля䛧 рлерие7S			
－	－	－	－	－	－	－	－	－	ұиә！эщәор	I	L0000＊0	＊PS－S¢Hg ：
－	－	－	－	－	－	－	－	－	лоля保 рлериетS			
－	－	－	－	－	－	－	－	－	ұиә！эщəо๐	¢9	L0000 ${ }^{\circ}$	
モ¢E 0	916．0	$020 \cdot 0$	$687^{\circ} 0$		968＊28L	910．0	$290{ }^{\circ} 0$	$97 \mathrm{~T}^{\circ} 0$				
LEF 7°	98.1 I	$610 \cdot 0$	LET0	$608{ }^{\circ}{ }^{-}$	¢¢ 7° LE－	720＇0－	¢ZI＇0－	901．0	ұиә！̣щəоจ	O9I	L0000＊0	＊${ }^{\text {dәə }} \mathrm{S}$ ： I
										suo！̣erəә！	sdəұ„ло－	
$\stackrel{\sim}{\sim}$	2	8_{\sim}^{10}	\square_{\sim}^{20}	${ }_{\sim}^{10}$	$0 \times$	$\stackrel{¢}{\sim}$	$\stackrel{76}{\sim}$	$\stackrel{16}{\sim}$				

Table B8：Dataset 9，Gauss 5 results．

L98．0	LIE．${ }^{\text {d }}$	820．0	697\％0	LEt．0	9¢t．8cI	Lz0．0	$090 \cdot 0$	モLI「0	лолия рлериетs			
L97＊	ZIE\％	8L0．0	2880	モı6．0－	$809{ }^{\text {2\％}}$	720 0^{-}	¢tio	880.0	ұиәээшәо	$0 ¢ \mathrm{I}$	L0000＊ 0	＊ทヤบd ：9
¢¢80	$87 \square^{\circ} \mathrm{I}$	6200	¢¢7\％	Let 0	978．gs	9100	6900	モIt「0	лоля罡 рrepueqs			
$827^{\circ} \mathrm{I}$	¢Шて＇Z	810．0	L68．0	モ06．0－	927＊87－	720 0^{-}	gito	6800^{-}	ұиә！эщәоゝ	¢L	$0 \cdot \mathrm{I}$	
98゙\％ 0	EGT ${ }^{\text {I }}$	$090 \cdot 0$	z¢\％＊0	モ67．0	706．8LI	8800	8200	GLI\％				
cetit	L97＇z	980\％	LIt＇0	728 0^{-}	L89 ${ }^{\circ} 09^{-}$	$885^{\circ} 0^{-}$	$8 \mathrm{LI}^{\circ} 0^{-}$	L9T．0	ұиәээщəор	¢I	［ ${ }^{\circ} 0$	
¢¢8\％	$677^{\circ} \mathrm{I}$	82000	¢¢7\％ 0	Let 0	868．tsI	910．0	6900	ぁLI．0	лоля楽 рлерие7S			
$827^{\circ} \mathrm{L}$	¢Шて＇	8L0．0	L68．0	06．0－	92も＊8て－	720 0^{-}	gito ${ }^{-}$	6800^{-}	ұиә！эщə๐จ	68	L00＊0	
－	－	－	－	－	－	－	－	－				
－	－	－	－	－	－	－	－	－	ұиә！эщəо刀	O¢L	L0000 0	иоұмәл ： G
L99．0	L8\％＇tI	9800	モtI「0	$967{ }^{\circ}$	927\％89	L90．0	861．0	geg．i				
¢080	ELS．	L80\％	7п9＊0	7ヵ¢ 0^{-}	696．99－	LZI 0^{-}	$68 \% 0$	7T2．L	ұиәээшәоจ	OSI	10000＊0	
－	－	－	－	－	－	－	－	－				
－	－	－	－	－	－	－	－	－	ұиәээщəор	I	L0000＊0	＊PS－SDHG ：$¢$
－	－	－	－	－	－	－	－	－				
－	－	－	－	－	－	－	－	－	ұиә！эщәоך	67	L0000＊ 0	＊SDHG ：$冖$
$968{ }^{\circ} 0$	LEL｀${ }^{\text {I }}$	890．0	LIZ＇0	モ67．0	モ\＆Lecti	$680 \cdot 0$	¢20．0	L61．0				
$077^{\circ} \mathrm{L}$	$986{ }^{\text { }}$	9800°	ธ97＊0	8780^{-}	G9\％ $79{ }^{-}$	LEL＇0	zst 0^{-}	02I．0	ұиә！эщәор	091	L0000 0	
										suo！̣еләұI	sdəұ．ıdo ${ }^{-}$	
$\stackrel{\sim}{\sim}$	2	80	${ }^{2} \sim$	${ }_{\sim}^{10}$	0x	$\stackrel{¢}{\sim}$	$\stackrel{\square}{\sim}$	$\stackrel{1}{\sim}$				

Table B9：Dataset 10，Gauss 5 results

Coefficient Estimates				\widetilde{g}_{1}	\widetilde{g}_{2}	\widetilde{g}_{3}	$\widetilde{\alpha}_{0}$	$\widetilde{\alpha}_{1}$	$\widetilde{\alpha}_{2}$	$\widetilde{\alpha}_{3}$	$\widetilde{\zeta}$	$\widetilde{\sigma}$
Algorithm	_oprteps	Iterations										
1: Steepest Descent*	0.00001	150	Coefficient	0.108	0.127	0.071	-18.092	-0.780	0.450	0.013	1.555	1.480
			Standard Error	0.154	0.065	0.014	120.389	0.437	0.227	0.061	0.744	0.303
2: BFGS*	0.00001	27	Coefficient	1.935	0.450	0.110	-46.994	-0.316	0.645	0.025	99.894	0.023
			Standard Error	0.661	0.158	0.046	58.592	0.287	0.135	0.030	3595.458	0.829
3: BFGS-SC*	0.00001	1	Coefficient	-	-	-	-	-	-	-	-	-
			Standard Error	-	-	-	-	-	-	-	-	-
4: DFP*	0.00001	150	Coefficient	1.935	0.450	0.110	-46.994	-0.316	0.645	0.025	92.147	0.025
			Standard Error	0.661	0.158	0.046	58.622	0.287	0.135	0.030	3319.922	0.899
5: Newton*	0.00001	10	Coefficient	0.136	0.127	0.136	-35.965	-0.957	0.404	0.022	2.561	1.073
			Standard Error	0.140	0.160	0.024	124.981	0.508	0.354	0.063	2.076	0.495
6: PRCG*	0.00001	150	Coefficient	0.085	-0.118	0.070	-6.998	-0.905	0.397	0.008	2.167	1.297
			Standard Error	0.123	0.061	0.027	132.466	0.427	0.254	0.067	1.107	0.325

Table B10: Dataset 11, Gauss 5 results.

9\％9．0	E62．I	890°	8¢7\％		L69． E L	280 0	$920{ }^{\circ}$	モ¢ ${ }^{\circ}$	．o．ug prepueqs		
$6 \mathrm{zr}^{\prime}$ T	688°	820°	เชで0	$670^{\circ} \mathrm{I}^{-}$	9tidect－	Ltio	Lsion－	$9 \mathrm{TL} 0^{-}$	ұиә！эғə๐	OgI	פ९Yd ：9
L¢t\％	¢ie＇t	¢9000	\＆\％${ }^{\circ} 0$	$68 \mathrm{E}^{\circ} 0$	02 2 LI	z80\％	820°	695\％	ло．ug prepueqs		
L Lz^{\prime} ．	980%	\＆ 20°	98\％ 0	166．0－		0ヵt：0	gsio	zst 0^{-}	ұиәэщə๐	II	иоғмәл ：¢
－	－	－	－	－	－	－	－	－	лолия р．repueqs		
－	－	－	－	－	－	－	－	－	ұиәэщәо	ogt	dfa ：
－	－	－	－	－	－	－	－	－	ломut prepueqs		
－	－	－	－	－	－	－	－	－	ұиә！эщәо	I	DS－SDfg ：
－	－	－	－	－	－	－	－	－	ло．üg p．repueqs		
－	－	－	－	－	－	－	－	－	ұиәэщә๐ด	\％9	Sఅ⿺廴 ：\％
Etio 0	69\％＇I	¢900	เz7\％	685 0	989971	880°	8200	2LLO	romut prepueqS		
$987^{\circ} \mathrm{I}$	826．	8200	$68 \%^{\circ} 0$	86．0－	L61985－	Obt 0^{-}	$99^{\circ} 0^{-}$	Esto	ұиәэщәоด	Ogt	
										suo！̣ехәұI	
$\stackrel{ }{\sim}$	2	${ }_{\sim}^{\text {® }}$	${ }_{\sim}^{20}$	ID	－${ }_{\sim}^{0}$	$\stackrel{\varepsilon}{\sim}$	$\stackrel{\tau}{\sim}$	$\stackrel{1}{\sim}$			

Table B11：Dataset 5，Gauss 3 results．

－	－	－	－	－	－	－	－	－			
－	－	－	－	－	－	－	－	－	ұшәэщə๐	zI	Đ〇Yd ：9
$929^{\circ} 0$	08t＇9	98000	8910	LLギ0	682＇991	2100	¢to 0	2720			
gle 0	¢90 ${ }^{\text {g }}$	$900^{\circ} 0$	L6\％ 0	166．0－	Lzt＇toz－	8210 0^{-}	6800^{-}	LE50	ұшәэџə๐	01	иотнәл ：¢
－	－	－	－	－	－	－	－	－	ло．u＊prepueqs		
－	－	－	－	－	－	－	－	－	ұиә！эәәด	O¢I	dАФ ：ஏ
－	－	－	－	－	－	－	－	－	лохия рхериенS		
－	－	－	－	－	－	－	－	－	ұшәэщә๐	I	OS－Şdg ：8
－	－	－	－	－	－	－	－	－			
－	－	－	－	－	－	－	－	－	ұшәэщə๐	97	S๖¢я ：\％
L98．0	088＇8	2800	8tio	297\％	881＇ 79	z700	LIt 0	889 0	ло．ug prepueqs		
8Et＇0	20t＇t	モ¢00	0GL L°	キLキ 0^{-}	Gte＇80 ${ }^{-}$	8800^{-}	GLI＇${ }^{-}$	889．L	ұшәэџә๐	OSI	
										suo！̣e：．әұI	
$\stackrel{2}{\sim}$	2		${ }^{20}$	$\stackrel{10}{\sim}$	${ }^{00}$	$\stackrel{8}{\sim}$	${ }_{\sim}^{76}$	$\stackrel{16}{\sim}$			

Table B12：Dataset 7，Gauss 3 results．

－	－	－	－	－	－	－	－	－	10．ug prepuras		
－	－	－	－	－	－	－	－	－	ұиә！эшә๐	O¢I	Đ．〇¢d ：9
\％9\％\％	288.1	8900	987°	96ヶ＇0	8Iz＇gl	680°	28000	L2İ0			
Z07＇I	985＇z	¢¢00	¢¢¢ 0	928：0－	¢゙で09－	$88 \mathrm{C}^{\circ} 0^{-}$	8t50	¢GI＇0	ұшәэџә๐	01	иотмәл ：я
¢8\％ 0	982．9ぁ	880°	L8L＇0	${ }^{\text {c }} 08^{\circ}$	806．$\ddagger 9$	L900	zLLO	8020	ло．ug prepuris		
$8 \mathrm{~S}^{\circ} 0$	マて8．＇t	\＆¢0＇0	879 ${ }^{\circ}$	¢98： 0^{-}	086 ${ }^{\circ}{ }^{-}$	gito	LIt．0	$996{ }^{\text { }}$	ұиә！эџə๐ด	OSI	dAd ：t
－	－	－	－	－	－	－	－	－	．o．ut prepury		
－	－	－	－	－	－	－	－	－	ұшә！эщə๐	I	OS－SĐля ： 8
－	－	－	－	－	－	－	－	－	ло．ug prepuras		
－	－	－	－	－	－	－	－	－	ұиәээәоด	${ }^{\text {\％}}$	Sゆ4d ：z
－	－	－	－	－	－	－	－	－	ло．ug prepurys		
－	－	－	－	－	－	－	－	－	ұиә！эщə๐	$0 ¢ \mathrm{~L}$	
										suo！̣е．гә7	
$\stackrel{2}{\sim}$	2	ε_{\sim}^{0}	${ }_{\sim}^{20}$	$\stackrel{L 0}{\sim}$	${ }^{00}$	$\stackrel{86}{\sim}$	$\stackrel{\tau 6}{\sim}$	$\stackrel{16}{\sim}$			

Table B13：Dataset 8，Gauss 3 results．

668°	¢ $99^{\text {² }}$	q2000	097．0	882．0	モ0： 0 gi	¢ı000	2900	Lg\％ 0	лолия р．repueqs		
80z＇I	$18 \% \%$	¢100	68\％ 0	92L：${ }^{-}$	¢Lく ${ }^{\text {c }}$	6900^{-}	Lsi．0－	扰0－	ұиә！эฆə๐	$0 ¢ \tau$	అ〇¢¢ ：9
－	－	－	－	－	－	－	－	－	ло．ия р．repueqs		
－	－	－	－	－	－	－	－	－	ұшәющәо	øI	иотмәл ：¢
TEF＊	88000	18000	$285^{\circ} 0$	688．0	82969	02000	8850	Oq2 ${ }^{\circ}$	лохия рхериет		
9180	061＇2	¢ 800°	6890	208：0－	$6 ¢ 69$－	L2T0	$988{ }^{\circ}$	$\mathrm{G}_{68}{ }^{\text { }}$ I	ұиәющәо	Ogi	dяd ：
－	－	－	－	－	－	－	－	－	лолия р．егриетs		
－	－	－	－	－	－	－	－	－	ұиәээщə๐	I	OS－SD89 ：
－	－	－	－	－	－	－	－	－			
－	－	－	－	－	－	－	－	－	ұиәэщәоว	27	SĐ४я ：\％
9180	8260	9200	モぁで0	0¢F＇0	モ08＇6もI	\＆1000	2900	$971^{\circ} 0$	лохия рхериетS		
8t\％＇I	L26＇I	600°	แゅ． 0	T28．0－		020\％${ }^{-}$	0zto	${ }^{\text {L60 }} 0^{-}$	ұиә！̣щәоด	0 g I	
										suo！̣егәұI	
2	2	${ }_{\sim}^{10}$	${ }_{\sim}^{2}$	${ }_{\sim}^{10}$	${ }^{00}$	${ }_{\sim}^{86}$	${ }_{\sim}^{86}$	$\stackrel{16}{\sim}$			

Table B14：Dataset 11，Gauss 3 results．

Appendix C

Hamilton's example $1 \& 2$ results.

060\％	799 ${ }^{\circ}$	0t0 0	880°	2690	00 0	$200{ }^{\circ}$	ло．ug prepur \％$^{\text {a }}$		
Le＇${ }^{\circ}$	2860	2610	6080	z97＇t	2000．0－	86000	ұиәэщə๐	Ogi	Đ：Yd ：9
2800°	868°	0to 0	890°	$960^{\circ} \mathrm{I}$	z000	900°			
$270^{\circ} \mathrm{I}$	892．I	9650	208．0	LT2＇t	7I－9820＇\％	¢200－	ұшәэщə๐	6 L	иотмәл ：¢
7800°	8680	0t00	$80^{\circ} 0$	$960^{\circ} \mathrm{I}$	z000	$900{ }^{\circ}$	ло．ut prepur \％$^{\text {S }}$		
$270^{\circ} \mathrm{I}$	892． 1	9650	2080	Lİ2＇t	${ }^{6-9699}{ }^{\text {z }}$	¢ 20.0	ұиәэщə๐	28	dAd ：
－	－	－	－	－	－	－	ло．ug prepury		
－	－	－	－	－	－	－	ұшәэщәо	I	OS－SD＿q ：
2800°	$868^{\circ} 0$	0to 0	890°	$960^{\circ} \mathrm{I}$	$700{ }^{\circ}$	$900{ }^{\circ}$	ло．ug p．repueqS		
2700°	892． 1	9650	208．0	202＇t	LL－2884 ${ }^{-}$	モ20\％	ұиәэџァ๐	${ }^{0 \pm}$	Sゆ⿺廴 ：\％
880°	L880	0t0 0	๕c00	$0{ }^{\text {a }}$	7000	0t0 0	ло．ut prepur \％$^{\text {S }}$		
LO0 ${ }^{\circ}$	¢¢g＇t	$965^{\circ} 0$	8080	299＇t	$9-2 \mathrm{~L} 60^{\circ} \mathrm{t}$	G200	ұиә！чшәо	O¢T	
							suo！̣ее．әұI		
$\stackrel{ }{\sim}$	2	${ }_{\sim}^{20}$	${ }_{\sim}^{10}$	${ }_{\sim}^{00}$	$\stackrel{76}{\sim}$	$\stackrel{16}{\sim}$			

8800	9670	0100	2000	2880	700°	Lz000	${ }_{\text {rourg }}$ рrepueqS		
$890{ }^{\text {a }}$	¢z8＇I	\＆Iz\％	827\％	08\％＇ワ	g－a86z L－	180\％${ }^{-}$	ұиәэщə๐จ	OSI	९．૫¢d ：9
18000	9880	0to 0	て¢00	096．0	1000	9000	лолия рлериетя		
200＇I	6¢¢＇I	\＆Iz\％	92\％ 0	288＊	$6-2660^{\circ} \mathrm{I}$	080°	ұиәэщə๐ด	81	иотнәл ：¢
18000	ceso	010\％	て¢00	0960	1000	9000	лолия р．repueqs		
200＇I	6ød．I	\＆Iz\％	927\％	288＇t	$6-9 \cdot \mathrm{I}^{-}$	0800	ұиәэщә๐ด	It	dАФ ：¢
－	－	－	－	－	－	－			
－	－	－	－	－	－	－	ұшәэщə๐	I	OS－SĐ¢¢ ：8
L80．0	9880	0t0 0	て¢000	096．0	1000	900°			
2．00＇I	6¢¢＇I	\＆Iz＇0	9LZ＇0	288＇币	${ }^{6-960} \varepsilon^{-}$	08000	ұшәэџə๐	02	SĐ．
も600	6 LI 0	Llo 0	z800	8890	¥00\％	210\％	лолия $^{\text {prepueq }}$ S		
LLI＇I	t2LO	£Iz\％	987°	996\％	2000\％ 0	¢01．0	ұшәэщə๐	Ogi	
								suo！̣erə ${ }^{\text {I }}$	
${ }_{\sim}$	2	${ }^{80}$	${ }_{\sim}^{10}$	${ }^{00}$	$\stackrel{76}{\sim}$	$\stackrel{16}{\sim}$			

Table C2：Example 1，Gauss 5 results，oprteps $=0.00001$ ．

LEL0	88．0	2900°	9880	8080	761＇t	¢10\％	9800	0才0\％			
8220	L78＇8	9820	¢ $8 \mathrm{E}^{\prime} \mathrm{I}$	9160	2162	9000＇0－	\＆ 880	$978{ }^{\circ}$	ұиәэџə๐	OSI	றDYd ：9
¢ぁt＇0	92L＇t	990．0	6680	gito	てセでI	8100	モ¢0 0	9t0 0			
9120	0も\＆゙も	7820	zez＇I	Ł¢6．0	6762	$8-\partial \mathrm{T} 20{ }^{\text {I }}$	LzE\％${ }^{-}$	9z\％ 0	ұиәэџə๐	gi	иотмәл ：¢
8tio	モ6z＇I	990°	80¢ 0	0 ce 0	L9Z＇I	¢t0 0	8.00°	2000	лохия рлериет		
8690	¢09＇t	1820	¢ $8 z^{\prime}$ I	9860	986.2	z000 0	$818 \% 0^{-}$	2 E 0	ұиәэџə๐ด	OgI	dfd ：
－	－	－	－	－	－	－	－	－	ıo．ug prepueqs		
－	－	－	－	－	－	－	－	－	ұиәэџฆ๐ด	I	DS－spdg ：
¢tio	92t＇t	990°	6680	¢LE\％	でで！	¢10\％	¢¢0 0	9 FO 0			
912．0	0ヵ\＆゙も	7820	ze8＇I	¢¢6．0	6762	8－9988\％	Lze\％	9880	ұиәэџə๐	$9 t$	SĐれq ：z
¢で0	E99．0	0200	9980	L87\％	$880^{\circ} \mathrm{I}$	¢100	000＇0	เも0 0	лохия р prepures		
6060	L66＇z	モ620	002＇I	$968{ }^{\circ}$	198． 2	$8000{ }^{\circ}$	678.0	$688^{\circ} 0$	ұиәэษә๐	OSI	
										suo！̣е．лә I	
$\stackrel{ }{2}$	2	ε_{\sim}^{0}	${ }_{\sim}^{2}$	${ }_{\sim}^{10}$	${ }^{00}$	${ }_{\sim}^{86}$	${ }_{\sim}^{86}$	$\stackrel{16}{\sim}$			

モ¢¢ ${ }^{\circ} 0$	996．0	8900	ธ98\％0	¢67\％ 0	8LİI	080＇0	モ¢000	$970 \cdot 0$				
\＆G2．0	876.8	$888{ }^{\circ}$	$688^{\circ} \mathrm{L}$	908＊0	LIt．8	L－9L87\％	LZ8．0－	モ680	ұиә！эщәоゝ	Ogi	L0000＊0	＊＇〇OYd ：9
$88 \cdot{ }^{\circ} 0$	0才0．I	L9000	298．0	$967^{\circ} 0$	LET「I	88000	¢¢0\％ 0	9700°	лолй рлериет			
982\％	8L0t	モ¢80	L68＇L	908＊0	gcti8	$8-\partial \mathrm{G} 6 \mathrm{~L}^{\circ} \mathrm{T}^{-}$	L 788°	モ68＊0－	ұиә！эщәоゝ	0I	L0000＊ 0	
$88 ⿺ 𠃊 丿^{\circ} 0$	070．I	2900	298．0	$967^{\circ} 0$	LEC．I	980\％	88000	$970{ }^{\circ}$				
982\％ 0	\＆20t	モ¢8＊0	L68．${ }^{\text {L }}$	908＊0	gct＇8	$9-ə 0 \amalg \downarrow \cdot \square$	L $78^{\circ} 0$	モ68：0	ұиә！эџәоゝ	${ }_{7} 7$	L0000 ${ }^{\circ}$	＊dAG ：t
－	－	－	－	－	－	－	－	－				
－	－	－	－	－	－	－	－	－	ұиәээџәоゝ	I	L0000 ${ }^{\circ}$	＊PS－SDHg ：$¢$
$88 ⿺ 𠃊 ⿻ 丷 木 斤^{\circ} 0$	0ヵ0 ${ }^{\circ}$	$290^{\circ} 0$	2980	$967^{\circ} 0$	LEL＇I	L80＇0	\＆¢0\％	$970{ }^{\circ} 0$				
982\％ 0	8L0t	モ¢8＊0	L68．${ }^{\text {L }}$	$908{ }^{\circ} 0$	gctis	L－99 ${ }^{\text {c }}$［	L $788^{\circ} 0$	モ680	ұиә！эщәоゝ	¢G	$0^{\circ} \mathrm{I}$	
$88 ⿺ 𠃊 丿^{\circ} 0$	070 ${ }^{\text {I }}$	$290{ }^{\circ}$	298．0	$967^{\circ} 0$	IEL＇I	L8000	880\％	$970{ }^{\circ}$	лолй рхерие7S			
982\％ 0	\＆20＇t	モ¢8＊0	L68＇L	908．0	9¢1．8	$9-$－0¢ $L^{\circ} \mathrm{I}$	L 78.0	モ68：0	ұиә！эщәоつ	61	［ 00	
$88 ⿺ 𠃊 丿^{\circ} 0$	680 ${ }^{\text {I }}$	2900°	298．0	$967^{\circ} 0$	IEC＇I	¢¢000	880\％	$970{ }^{\circ}$	лолй рхерие7S			
982\％ 0	8L0＇t	モ¢8＊0	L68．${ }^{\text {L }}$	$908{ }^{\circ}$	gctis	L－əItI＇I	L 788°	モ68：0	ұиә！эщəоゝ	77	100＊0	
88100	070 ${ }^{\text {I }}$	2900	298．0	$967^{\circ} 0$	LEC．I	9800	88000	$970 \cdot 0$				
982\％	\＆20＊	モ¢80	L68．${ }^{\text {L }}$	$908{ }^{\circ}$	¢9t．8	L－əc90 ${ }^{\text {－}}$	LZ8＊0	モ680	ұиә！эщәоゝ	$\dagger \square$	L0000 0	S๖дя ：\％
もて「．0	ZIS．0	72000	$878{ }^{\circ} 0$	L97\％ 0	9660	L70＇0	$690{ }^{\circ}$	$880{ }^{\circ}$				
9860	\＆8L． 7	$978{ }^{\circ} 0$	898．${ }^{\text {I }}$	962\％0	070＇8	700 0^{-}	7¢E\％	8680	ұиә！̣щәоゝ	09I	L0000＊ 0	
										suо！ұеләұI	sdəұ．ı才o ${ }^{-}$	шчр！．．．\％${ }_{\text {IV }}$
$\stackrel{\sim}{\sim}$	2	${ }_{\sim}^{8}$	\sim_{\sim}^{\sim}	${ }_{\sim}^{10}$	${ }^{0} \sim$	$\stackrel{¢}{\sim}$	$\stackrel{76}{\sim}$	$\stackrel{1}{\sim}$				

Table C4：Example 2，Gauss 5 results．

[^0]: *A modified version of this paper is forthcoming in the September 2005 issue of Studies in Nonlinear Dynamics and Econometrics. The authors are grateful to B. Mizrach, Editor of SNDE, D.A. Belsley, C.M. Dahl, and J.D. Hamilton for their assistance, and to an anonymous referee for some helpful comments. E.J. O'Brien, who is a Government of Ireland Scholar, also wishes to thank the Irish Council for the Humanities and Social Sciences for its generous funding.

