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Differentiable technology, the curvature of the profit function, 

and the response of supply to own-price changes 

 

Abstract: This note begins by establishing a property of net supply for a competitive firm: 

assuming differentiability of the production frontier, linearly independent price-vectors have 

disjoint image-sets under the supply mapping. This supports the main results: first, a simple 

proof of McFadden's proposition that differentiability of the production frontier is necessary 

and sufficient for the profit function to be strictly quasi-convex; and secondly, a proof that for 

discrete price-changes, own-price effects in supply are strictly positive, assuming a dif-

feretiable technology. Finally, the implications for cost and demand theory are indicated. 
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INTRODUCTION 

Profit, cost and expenditure functions are widely used in pure and applied economics. For 

example, these keys produce a total of 1,100 hits in the Econlit database in September 2003. 

A competitive firm's profit function is convex in prices, while cost and expenditure functions 

are concave. For differentiable functions, these properties, with Hotelling's or Shephard's 

lemmas, imply weak- inequality own-price effects on net supplies or demands; for discrete 

price-changes, similar results flow directly from the logic of optimality. Many years ago, 

McFadden (1978a, pp. 34-35, 89-90, and appendices) showed that cost and profit functions 

for differentiable technologies are in fact strictly quasi-concave and strictly quasi-convex re-

spectively, so that between any pair of linearly independent price-vectors, the arc of the func-

tion is correspondingly strictly concave or strictly convex. This has not been widely reported, 
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the proofs are difficult, and standard sources present only weak convexity or concavity and 

weak-form own-price effects: for example, Barten and Böhm (1982, p. 402), Gravelle and 

Rees (1992, pp. 204, 209, 242-244), Kreps (1990, pp. 48, 244, 251), Mas-Collel et al. (1995, 

pp. 59, 63, 138, 141) and Varian (1992, pp. 36, 41, 61, 72, 105). A partial exception is Nadiri 

(1982, p. 437).1 

 

We begin with an extremely simple alternative proof of McFadden's result for profits. We 

then derive strong-form own-price effects in supply for discrete price-changes. Finally we 

present conclusions, with extensions to costs and demand.  

 

STRICT QUASI CONVEXITY OF THE PROFIT FUNCTION 

Preliminary lemma 

Given a production set Y⊂RN and any price-vector p>0, a competitive firm chooses y∈Y to 

maximize profits p.y. Maxima exist if Y is closed and if unbounded actions are impossible,2 

and the solutions generate the supply correspondence Y(p) and the profit function π(p). 

 

Let Y be representable implicitly by a differentiable function g(y), with g(y)=0 on the frontier. 

The first-order conditions reduce to: pi

pj
 = ∂g

∂yi
/∂g
∂yj

 = Mji,3 ∀i,j, i≠j, unless a boundary cond ition 

binds on i or j.4 If p' and p"  are linearly independent, then for some i,j, p'i
p'j

 ≠ p"i
p"j

 , so that  a given 

point y can never be optimal at both p' and p" , because Mji(y) cannot equal both p'i
p'j

  and p"i
p"j

 . 

Formally, Mji(y')≠Mji(y") for any y'∈Y(p') and y"∈Y(p"), and we have: 

                                                 
1 See note 5 below on Nadiri. 
2 For convex technologies, with additional restrictions on production sets, no firm has access to unbounded ac-
tions (Starr, 1997, pp. 112-114). Alternatively, assume the production set to be semi-bounded, i.e. that there 
exists a non-empty set of prices at which solutions exist to the profit maximization problem (McFadden, 1978a, 
p. 62). 
3 Mji is a marginal product, or its inverse, or a marginal rate of transformation or substitution. 
4 Corner solutions are ignored, but these involve points of non-differentiability in the frontier of the opportunity 
set, i.e. the intersection of Y with the set defined by boundary conditions. 
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Lemma 1 Let p' and p"  be any pair of linearly independent price-vectors. If g(y) is differen-

tiable, then Y(p')∩Y(p")=∅. If Y(p) is a function, it is one-to-one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 illustrates this result, for technologies where good 1 is the sole input to the produc-

tion of good 2. In Figure 1(a) multiple optima exist at prices po on a linear and differentiable 

segment of the frontier. None of these points could be optimal at a price-vector that was not a 

scalar multiple of po. At  y ˆ  in Figure 1(b), differentiability is violated, M21 is undefined, and  y ˆ 

is optimal on a convex set of prices that includes po. 

 

 ŷ 

y2 

y1 y1 

Non-differentiability:  y ˆ  is opt-
imal, not just at po, but on a convex 
set of price-vectors including po. 

Differentiability, without unique-
ness: points on the linear segment 
of the frontier cannot be optimal at 
price-vectors that are linearly in-
dependent of  po. 

po y2 

Y 

(b) 

po 

Y 

(a) 

FIGURE 1. Production sets illustrating: 

(a) differentiability with weak convexity; 

(b) a point of non-differentiability in the production frontier. 
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The main result 

Differentiability of g(y) is sufficient and necessary for strict quasi-convexity of π(p): i.e., 

∀ p', p"∈RN+, p'≠p" , and ∀t∈(0,1): π(pt)<max{π(p'),π(p")}, where pt = tp'+(1−t)p" . 

 

 Sufficiency. Let g(y) be differentiable. First, let p' and p"  be linearly independent, and define 

pt = tp'+(1−t)p"  for any t∈(0,1). Let yt∈Y(pt). As pt is linearly independent of p' and p" , 

Lemma 1 applies, so yt∉Y(p') and yt∉Y(p"): therefore p'.yt<π(p') and p" .yt<π(p"). Taking a 

convex combination, we immediately have π(p) strictly convex on [p', p"].5 

 

Alternatively, let p"=kp', some k>0, k≠1. Then pt=tp'+k(1−t)p' = θp', and Y(p') = Y(p") = 

Y(pt), by zero-homogeneity of Y(p). Using linear homogeneity of π(p), π(pt) lies strictly be 

tween π(p') and π(p"), which are unequal because k≠1, and π(pt)<max{π(p'),π(p")}.6 

 

Necessity. Let π(p) be strictly quasi-convex. If g(y) is not differentiable at  y ˆ∈Y then Lemma 

1 is inapplicable at y ˆ . Suppose that ŷ were optimal at some p, which would generally not be 

unique. All such p would form a convex set C ŷ on which π(p) would be linear: π(p) = ŷ.p, all 

p∈Cŷ, violating strict quasi-convexity. 7 Thus at any po∈RN+, strict quasi-convexity of π(p) in 

the neighbourhood of po must imply differentiability of g(y) at all y∈Y(po). 

 

  

                                                 
5 Strict convexity implies strict quasi-convexity, but the converse does not hold. A version of the result in the 
text is stated, without explicit reference to differentiability, in Nadiri (1982, 437). Nadiri (p. 451) lists some of 
McFadden's results. 
6 Let k<1, so θ<1, and π(pt)=π(θp')=θπ(p')<π(p')=max{π(p'),π(p")}, π(p) being homogeneous of degree one. 
For k>1, π(pt)<max{π(p'),π(p")} also, as the labelling of p' and p" is arbitrary. 
7 For any linearly independent p' and p" in Cŷ, it is always possible to normalize p" so that p'.ŷ=p".ŷ=pt.ŷ, where 
pt is a convex combination of p' and p", and then π(pt)=max{π(p'),π(p")}. 
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THE IMPACT OF A DISCRETE OWN-PRICE CHANGE 

If π(p) is twice differentiable, Hotelling's lemma and convexity of π(p) together imply 

∂yi(p)
∂pi

 ≥0, each i. To strengthen this we may make further assumptions about the Hessian of 

π(p); alternatively, we may show that arbitrarily close to any po there exist points at which 

∂yi(p)
∂pi

>0, each i (McFadden, 1978b, p. 403; Takayama, 1994, p. 141). However, Lemma 1 fa-

cilitates a stronger result, without calculus, except for assuming different iability of g(y). 

 

Given y'∈Y(p') and y"∈Y(p"), (p'−p").(y'−y")≥0 (Varian, 1992, p. 36). Choose p j
'=pj

", all j≠i. 

Then for any p i
' and p i

", (pi
'−p i

")(yi
'−yi

")≥0. If p i
'≠p i

", p' and p"  are linearly independent, assuming 

pj
'≠0, some j≠i, and Lemma 1 applies, given g(y) differentiable. Both inequalities are then 

strict, and the effect of an own-price change on net output is strictly positive, cet. par. 

 

CONCLUSIONS 

If g(y) is differentiable then linearly independent price-vectors have disjoint image-sets under 

the supply mapping. Consequently, π(p) is strictly quasi-convex in the neighbourhood of any 

po∈RN+ if and only if g(y) is differentiable at each y∈Y(po). For g(y) differentiable, own-price 

effects on net supply are strictly positive, whether or not π(p) is different iable. 

 

Strict convexity of Y is neither necessary nor sufficient for these results. For Y strictly con-

vex, Y(p) is single-valued, but the results are driven by the disjointedness of Y(p'), Y(p") and 

Y(pt), not by the multiplicity of the solutions at each p. 

 

Lemma 1 adapts naturally to cost (or consumer) theory: for a differentiable isoquant (indif-

ference) surface, the cost (expenditure) function is strictly quasi-concave, and conditional in-

put-demands (compensated demands) have strictly negative discrete own-price effects. 
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