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Differentiable technology, the curvature of the profit function,

and the response of supply to own-price changes

Abstract: This note begins by establishing a property of net supply for a competitive firm:
assuming differentiability of the production frontier, linearly independent price-vectors have
digoint image-sets under the supply mapping. This supports the main results: first, a smple
proof of McFadden's proposition that differentiability of the production frontier is necessary
and sufficient for the profit function to be strictly quasi-convex; and secondly, a proof that for
discrete price-changes, own-price effects in supply are strictly positive, assuming a dif-

feretiable technology. Finally, the implications for cost and demand theory are indicated.
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INTRODUCTION
Profit, cost and expenditure functions are widely used in pure and applied economics. For
example, these keys produce a total of 1,100 hits in the Econlit database in September 2003.
A competitive firm's profit function is convex in prices, while cost and expenditure functions
are concave. For differentiable functions, these properties, with Hotelling's or Shephard's
lemmas, imply weak-inequality own-price effects on net supplies or demands; for discrete
price-changes, similar results flow directly from the logic of optimality. Many years ago,
McFadden (1978a, pp. 34-35, 89-90, and appendices) showed that cost and profit functions
for differentiable technologies are in fact strictly quasi-concave and strictly quasi-convex re-
spectively, so that between any pair of linearly independent price- vectors, the arc of the func-

tion is correspordingly strictly concave or strictly convex. This has not been widely reported,
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the proofs are difficult, and standard sources present only weak convexity or concavity and
weak-form own-price effects: for example, Barten and Béhm (1982, p. 402), Gravelle and
Rees (1992, pp. 204, 209, 242-244), Kreps (1990, pp. 48, 244, 251), Mas-Colldl et al. (1995,
pp. 59, 63, 138, 141) and Varian (1992, pp. 36, 41, 61, 72, 105). A partial exception is Nadiri

(1982, p. 437).1

We begin with an extremely simple alternative proof of McFadden's result for profits. We
then derive strong-form own-price effects in supply for discrete price-changes. Finally we

present conclusions, with extensions to costs and demand.

STRICT QUASI CONVEXITY OF THE PROFIT FUNCTION
Preliminary lemma
Given a production set Yi R'and any price-vector p>0, a competitive firm chooses yi Y to
maximize profits p.y. Maxima exist if Y is closed and if unbounded actions are impossible,?

and the solutions generate the supply correspondence Y (p) and the profit function p(p).

Let Y be representable implicitly by a differentiable function gy), with g(y)=0 on the frontier.

The first-order conditions reduce to: %: %%/%%: Mji,3 "1, 11}, unless a boundary condition
] [ ]

bindsoni or j.* If p' and p" are linearly independent, then for someii,j, %fl %,sothat agiven
J

point y can never be optimal at both p' and p", because M;i(y) cannot equal both %I and p—' .

Pj

Formally, Mji(y")t M;i(y") for any yT Y(p) and y'T Y(p"), and we have:

! See note 5 below on Nadiri.

2 For convex technologies, with additional restrictions on production sets, no firm has access to unbounded ac-
tions (Starr, 1997, pp. 112-114). Alternatively, assume the production set to be semi-bounded, i.e. that there
exists a non-empty set of prices at which solutions exist to the profit maximization problem (McFadden, 19783,
p. 62).

3 M;i isamarginal product, or itsinverse, or amarginal rate of transformation or substitution.

4 Corner solutions are ignored, but these involve points of non-differentiability in the frontier of the opportunity
set, i.e. theintersection of Y with the set defined by boundary conditions.
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Lemmal Letp andp" beany pair of linearly independent price-vectors. If g(y) is differen-

tiable, then Y(p")CY(p")=A. If Y(p) isa function, it is one-to-one.

FIGURE 1. Production setsillustrating:
(a) differentiability with weak convexity;

(b) a point of non-differentiability in the production frontier.
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Differentiability, without unique- Non-differentiability: § is opt-
ness. points on the linear segment imal, not just at p°, but on a convex
of the frontier cannot be optimal at set of price-vectors including p°.

price-vectors that are linearly n-
dependent of p°.

Figure 1 illustrates this result, for technologies where good 1 is the sole input to the produc-
tion of good 2. In Figure 1(a) multiple optima exist at prices p° on a linear and differentiable
segment of the frontier. None of these points could be optimal at a price- vector that was not a
scalar multiple of p°. At ¥in Figure 1(b), differentiability is violated, M is undefined, and ¥

isoptimal on a convex set of prices that includes p°.




The main result

Differentiability of g(y) is sufficient and necessary for strict quasi-convexity of p(p): i.e,

" p,p'T R, p1p’, and "t (0,2): p(p)<max{p(p’).p(p")}, where p' = tp'+(1- t)p".

Sufficiency. Let g(y) be differentiable. First, let p' and p" be linearly independent, and define
p' = tp'+(1-t)p" for any tl (0,1). Let YT Y(p'). As p'is linearly independent of p' and p",
Lemma 1 applies, so Y Y(p') and YT Y(p"): therefore p'.y'<p(p') and p".y'<p(p"). Taking a

convex combination, we immediately have p(p) strictly convex on [p', p"'] >

Alternatively, let p"=kp', some k>0, k! 1. Then p'=tp'+k(1-t)p' = qp’, and Y(p') = Y(p") =
Y(pY), by zero-homogereity of Y(p). Using linear homogeneity of p(p), p(p') lies strictly be

tween p(p') and p(p"), which are unequal because k* 1, and p(pt)<max{p(p'),p(p" )} 5

Necessity. Let p(p) be strictly quasi-convex. If g(y) is not differentiable at §1 Y then Lemma
1 is inapplicable at y. Suppose that ¥ were optimal a some p, which would generally not be
unique. All such p would form a convex set C¥ on which p(p) would be linear: p(p) = ¥.p, all
pl CY, violating strict quasi-convexity.” Thus at any p°1 RY, strict quasi-convexity of p(p) in

the neighbourhood of p° must imply differentiability of g(y) a dl yi Y(p°).

® Strict convexity implies strict quasi-convexity, but the converse does not hold. A version of the result in the
text is stated, without explicit reference to differentiability, in Nadiri (1982, 437). Nadiri (p. 451) lists some of
M cFadden's results.

® Let k<1, so g<1, and p(p")=p(qp')=ap(p’)<p(p')=max{ p(p').p(p")}, pP(p) being homogeneous of degree one.
For k>1, p(p")<max{ p(p') ,p(p")} also, asthe labelling of p' and p" isarbitrary.

’ For any linearly independent p' and p" in C, it is always possible to normalize p" so that p' §=p".9=p".y, where
p'isaconvex combination of p' and p", and then p(p")=max{ p(p').p(p")}.
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THE IMPACT OF A DISCRETE OWN-PRICE CHANGE
If p(p) is twice differentiable, Hotelling's lemma and convexity of p(p) together imply

yi(p) 5

. 0, each i. To strengthen this we may make further assumptions about the Hessian of

p(p); aternatively, we may show that arbitrarily close to any p° there exist points at which

—“{;é?&o, each i (McFadden, 1978b, p. 403; Takayama, 1994, p. 141). However, Lemma 1 fa-

cilitates a stronger result, without calculus, except for assuming differentiability of g(y).

GivenyT Y(p') and y'T Y(p"), (p- p").(y- y')? O (Varian, 1992, p. 36). Choose p;=p;, al jti.
Then for any p; and pi, (pi- pi)(Yi- Vi) O. If pit pi, p' and p" are linearly independent, assuming
pjlo, some ji, and Lemma 1 applies, given g(y) differentiable. Both inequalities are then

strict, and the effect of an own-price change on net output is strictly positive, cet. par.

CONCLUSIONS
If g(y) is differentiable then linearly independent price-vectors have disjoint image-sets under
the supply mapping. Consequently, p(p) is strictly quasi-convex in the neighbourhood of any
p°l RY if and only if g(y) is differentiable at each yi Y(p°). For g(y) differentiable, own-price

effects on net supply are strictly positive, whether or not p(p) is differentiable.

Strict convexity of Y is neither necessary nor sufficient for these results. For Y strictly con
veX, Y(p) is single-valued, but the results are driven by the digointedness of Y(p'), Y(p") and

Y(pY), not by the multiplicity of the solutions at eachp.

Lemma 1 adapts naturally to cost (or consumer) theory: for a differentiable isoquant (indif-
ference) surface, the cost (expenditure) function is strictly quas-concave, and conditional in-

put-demands (compensated demands) have strictly negative discrete own-price effects.



REFERENCES

Barten, A.P. and V. Béhm. 1982. Consumer theory. In: Handbook of mathematical econom-
ics, val. 1, ed. K.J. Arrow and M.D. Intriligator. Amsterdam: North-Holland. Pp. 381-429.

Gravelle, H. and R. Rees. 1992. Microeconomics. 2nd ed. London: Longman.

Kreps, D. M. 1990. A course in microeconomic theory. New Y ork: Harvester Wheatsheaf.

McFadden, D. 1978a. Cost, revenue, and profit functions. In: Production economics: a dual
approach to theory and applications, vol. 1, ed. M. Fuss and D. McFadden. Amsterdam:
North Holland. Pp. 3-109.

McFadden, D. 1978b. Convex analysis. In: Production economics. a dual approach to theory
and applications, Vol. 1, ed. M. Fuss and D. McFadden. Amsterdam: North Holland. Pp.
383-408.

Mas-Callel, A., Whinston, M.D. and Green, J.R. 1995. Microeconomic analysis. Oxford: Ox-
ford University Press.

Nadiri, M.l. 1982. Producers theory. In: Handbook of mathematical economics, val. Il, ed.
K.J. Arrow and M.D. Intriligator. Amsterdam: North-Holland. Pp. 431-490.

Starr, R.M. 1997. General equilibrium theory. Cambridge: Cambridge University Press.

Takayama, A. 1994. Analytical methods in economics. New Y ork: Harvester Wheatsheaf.

Varian, H.R. 1992. Microeconomic analysis. 3rd ed. New Y ork: Norton.



