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Abstract

A model is considered where two firms compete in investing in a risky

project. At certain points in time the firms obtain imperfect information about

the profitability of the project. We impose that investing first can be beneficial

because a Stackelberg advantage, and thus a higher market share, is obtained.

On the other hand, investing as second implies that one can benefit from an in-

formation spillover generated by the investment of the other firm. Consequently,

in equilibrium there is either a preemption situation or a war of attrition. In

case no investment takes place during the war of attrition, this war of attrition

can turn into a preemption situation. One counterintuitive result is that welfare

can be negatively affected by signals becoming more informative or by occur-

ring more frequently. Furthermore, simulations indicate that duopoly leads to

higher welfare than monopoly when signals are less informative, whereas the

opposite holds if there is more or better information.
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1 Introduction

Two main forces that influence a firm’s investment decision are uncertainty about the

profitability of the investment project and the behaviour of potential competitors,

having an option to invest in the same project. In this paper the influence of

uncertainty and competition on the strategic considerations of a firm’s investment

decision and the resulting welfare effects are investigated.

The framework we use here assumes imperfect information that arrives stochas-

tically over time. As to the project only two states are possible: either the project

is profitable or it yields a loss. Firms have an identical belief in the project being

profitable. This belief is updated over time due to information that becomes avail-

able via signals that arrive according to a Poisson process. The signal can either

be good or bad: in the first case it indicates that the project is profitable, whereas

in the latter case investment yields a loss. However, the signals may not provide

perfect information. With an exogenously given fixed probability the signal gives

the correct information. For simplicity, it is assumed that the signals can be ob-

served without costs. They can be thought of for example as arising from media

or publicly available marketing research. As an example of the duopoly model with

signals, consider two soccer scouts who are considering to contract a player. In order

to obtain information on the player’s quality both scouts go to matches in which

the wanted player plays. If he performs well, this can be seen as a signal indicating

high revenues, but if he performs poorly, this is a signal that the investment is not

profitable. This induces an option value of waiting for more signals to arrive and

hence getting a better approximation of the actual profitability of the project.

On the side of the economic fundamentals underlying the model it is assumed

that there are both a first mover and a second mover advantage. The first mover

effect results from a Stackelberg advantage obtained by the first investor. The sec-

ond mover advantage arises, because after one of the firms has invested, the true

state of the project becomes known to both firms. The firm that has not invested

yet benefits form this in that it can take its investment decision under complete

information. In this paper it is shown that, depending on the prior beliefs on the

profitability of the project and the magnitudes of the first and second mover advan-

tages, either a preemption game or a war of attrition arises. The latter occurs if the

information spillover exceeds the first mover Stackelberg effect. In the reverse case a

preemption game arises. Even both types of games may occur in the same scenario:

in a war of attrition there exists a positive probability that no firm undertakes the

investment. Then it may happen – if enough good signals arrive – that at a certain

point in time the first mover outweighs the information spillover, implying that a
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preemption game arises. It is shown that at the preemption point two things can

happen in equilibrium. Firstly, one firm can invest while the other firm first waits

to get the information spillover before it decides whether to invest or not. In this

case the resulting market structure is a Stackelberg one. Secondly, both firms can

invest simultaneously, thus resulting in e.g. a Cournot market. in that case both

firms prefer a symmetrical situation in the output market above accepting the infor-

mation spillover together with the Stackelberg disadvantage that is obtained upon

investment by the competitor.

In this paper we show that the presence of information streams and uncertainty

concerning the profitability of a new market leads to hybrid welfare results. We in-

vestigate the impact of information on expected ex ante welfare. For the monopoly

case we find that welfare may in fact be decreasing in the quantity and quality of

the signals. This is mainly due to the fact that when signals appear more frequently

over time, or provide more reliable information, the option value of waiting for more

information increases, which leads to investment at a later date, lowering consumer

surplus. This result may extend to the duopoly case. One would expect that com-

petitive pressure together with better information leads to earlier investment and

thus to higher expected consumer surplus. There is, however, an opposite effect

closely linked to the market structure. In equilibrium there is a certain probability

that the actual outcome is a Stackelberg equilibrium. If this is the case and the

market turns out to be bad there is only one firm that looses the sunk investment

costs (namely the leader), while the follower will not invest at all. There is also

a probability that the market ends up in a Cournot equilibrium with simultaneous

investment at the preemption point. If the market turns out to be bad in this case

there are two firms that loose the sunk investment costs. When more information

is available, the information spillover is less valuable. This implies that a Cournot

market will arise with a higher probability when the quality of information rises.

In that case the resulting downward pressure on expected producer surplus (losing

twice the sunk investment costs instead of once) might outweigh the increase in

expected consumer surplus.

Secondly, simulations indicate that for low levels of quantity and quality of the

signals a duopoly yields significantly higher levels of expected welfare. The intuition

behind this result is straightforward. When the information stream is poor in both

quantity and quality, the option value of waiting for a monopolist is low. Since for

competing firms this value is already low due to competition, the standard dead-

weight loss argument applies here. We also find, however, that with high levels of

quantity and quality of the signals, monopoly leads to significantly higher welfare

levels than a duopoly. This is because of two reasons. Firstly, duopoly stimulates
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preemption which is bad for welfare because a significant value of waiting exists in

case the expected information gain per unit of time is large. Secondly, the possibility

of simultaneous investment in a preemptive duopoly has a negative effect on expected

producer surplus, because there exists a possibility that the project turns out to be

bad. These effects are larger than the increase in expected consumer surplus.

Most of the literature on optimal investment deals with the effects of either

uncertainty or competition. The real option theory concerns itself with investment

decisions under uncertainty (cf. Dixit and Pindyck (1996)). In this literature nature

chooses a state of the world at each point in time, influencing the profitability of

the investment project. The problem is then to find an optimal threshold level of

an underlying variable (e.g. price or output value of the firm), above which the

investment should be undertaken. A recent contribution in this area dealing with

technology adoption is Alvarez and Stenbacka (2001) who include the opportunity

to update the technology with future superior versions.

In the strategic interaction literature a number of models have been developed,

dealing with different situations such as patent races and technology adoption. In

general, a distinction can be made between two types of models. Firstly, there

are preemption games in which two firms try to preempt each other in investing

(cf. Fudenberg and Tirole (1991)). The equilibrium concept used in such games is

developed in Fudenberg and Tirole (1985). Another class is the war of attrition,

which is first introduced by Maynard Smith (1974) in the biological literature and

later adopted for economic situations (cf. Tirole (1988)). Originally, the war of

attrition describes two animals fighting over a prey. In an economic context one can

think of two firms considering adopting a new technology. Both know that for one

firm it would be optimal to invest, but neither wants to be the first to invest, since

waiting for an even newer technology would be better. The equilibrium concept used

in this type of game is introduced in Hendricks et al. (1988).

The literature combining both aspects is small indeed, see Grenadier (2000) for

a survey. A first attempt to combine real option theory with timing games was

made in Smets (1991). Huisman (2001) provides some extensions to this approach

and applies this framework to technology adoption problems. Recent contributions

include, e.g., Boyer et al. (2001) and Weeds (2002).

This paper extends the strategic real options literature in the direction of imper-

fect information. Jensen (1982) was the first to introduce uncertainty and imperfect

information in a one-firm-model dealing with technology adoption. The present pa-

per uses an information structure that is similar and which is discussed extensively

in Thijssen et al. (2003) for the one firm case. In Mamer and McCardle (1987)

the impact on the timing of innovation of costs, speed and quality of information
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arriving over time is studied for a one-firm model as well as a duopoly. However, due

to an elaborate information structure, Mamer and McCardle (1987) did not obtain

explicit results. Hoppe (2000) considers a duopoly framework in which it is a priori

uncertain whether an investment project is profitable or not. The probability with

which the project is profitable is exogenously given, fixed and common knowledge.

As soon as one firm invests, the true profitability of the project becomes known.

This creates informational spillovers that yield a second mover advantage.

The observation that a game of technology adoption under uncertainty is either

a preemption game or a war of attrition dates back to Jensen (1992a). However,

where Jensen (1992a) examines a two-stage adoption game, the present paper pro-

vides an extension of these results to the case of an infinite horizon continuous time

framework. Moreover, as has been mentioned before, in our framework both types

of games can occur within the same scenario. The equilibrium concept that we use

is discussed in detail in Thijssen et al. (2002).

The present paper is related to Décamps and Mariotti (2000) who also consider

a duopoly model where signals arrive over time. Differences are that in Décamps

and Mariotti (2000) only bad signals exist and that signals are perfectly informative.

This means that after receiving one signal the game is over since the firms are sure

that the project is not profitable, while in our framework it could still be possible

that the project is good. In Décamps and Mariotti it holds that, as long as no signal

arrives, the probability that the project is good continuously increases over time and

the firms are assumed to be asymmetric, which also induces uncertainty regarding

the players’ types, whereas we consider identical firms. Furthermore, Décamps and

Mariotti apply the Bayesian equilibrium concept, whereas in our model this is not

the case. Another implication is that a coordination problem between the two firms

that occurs in our framework is not present in Décamps and Mariotti (2000). This

coordination problem concerns the issue of which firm will be the first to invest

in the preemption equilibrium. Another duopoly paper where information arrives

over time is Lambrecht and Perraudin (2003). There, the information relates to the

behaviour of the competitor: each firm has a certain belief about when the other

firm will invest and this belief is updated by observing the other firm’s behaviour.

The paper is organised as follows. In Section 2 the model is described. Then,

in Section 3 we analyse the model for the scenario that the firm roles, i.e. leader

and follower, are exogenously determined. In Section 4 the exogenous firm roles

are dropped and the model is analysed for the case where the firms are completely

symmetric. In Section 5 a welfare measure is introduced and welfare effects are

discussed. Finally, Section 6 concludes the paper.
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2 The Model

We consider a situation in which two identical firms have the opportunity to invest

in a project with uncertain revenues. Time is continuous and indexed by t ∈ [0,∞).

The project can either be good (denoted by H), leading to high revenues, or bad (de-

noted by L), leading to low revenues. From the point of view of strategic behaviour

there ar two possibilities. Let τ ≥ 0 denote the first point in time where investment

takes place. If there is exactly one firm investing at time τ this firm is called the

leader. The other firm then automatically becomes the follower. In our model this

pattern of investment leads to Stackelberg competition. A second possibility is that

both firms invest at time τ , leading to Cournot-Nash competition.

After investment has taken place by at least one firm it is assumed that the state

of the project becomes immediately known to both firms. Hence, in the case where

there is a leader and a follower there is an information spillover from the leader to

the follower, which creates a second mover advantage. In that case, the follower

decides on investment immediately after the true state of the project is revealed. It

is assumed that this does not take any time. So, if one firm invests at time τ ≥ 0,

the follower will either invest at time τ as well or not at all. We distinguish this

case from the case of simultaneous investment where both firms also invest at the

same time τ ≥ 0, but without one of the firms having the second mover advantage.1

That is, in case of simultaneous investment, at the time of investment both firms

are uncertain as to the true state of the project.

In case the project is good the leader’s revenue equals UH
L > 0, whereas if the

project is bad the leader’s revenue equals UL
L = 0. The sunk costs of investment

are given by I > 0. If the project is good, the follower will immediately invest as

well and gets revenue UH
F > 0. The follower will also incur the sunk costs I. It is

assumed that UH
L > UH

F > I. Hence, there is a first mover advantage if the project

turns out to yield a high revenue and investment is profitable for both firms. If the

project is bad the payoff for the follower equals UL
F = UL

L = 0. So, if the project

is bad the follower observes this due to the information spillover and thus refrains

from investment. This implies that in case of a bad project, only the leader incurs a

loss that is equal to the sunk costs of investment. To see who is in the best position,

the leader or the follower, the magnitudes of the first and second mover advantages

1The assumption that the follower reacts immediately might seem unrealistic, but is not very

restrictive. If for example there is a time lag between investment of the leader and the follower this

only has an influence on the payoffs via extra discounting by the follower. The important point is

that the game ends as soon as one firm has invested, because then the decision of the other firm is

made as well. The fact that actual investment may take place at a later date is irrelevant for the

qualitative analysis.
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have to be compared.

If both firms invest simultaneously and the project turns out to be good, both

receive UH
M > 0, where UH

F < UH
M < UH

L . The revenues can be seen as an infinite

stream of payoffs πi
j discounted at rate r ∈ (0, 1), i.e. U i

j =
∫∞
0 e−rtπi

jdt = 1
rπ

i
j ,

i = H,L, j = L,M,F . Example 1 illustrates this framework.

Example 1 Consider a new market for a homogeneous good. Two firms have the

opportunity to enter the market, that can be either good or bad. Let market demand

be given by P (Q) = Y − Q for some Y > 0 if the market is good (H) and by

P (Q) = 0 if the market is bad (L). The cost function is given by C(q) = cq, for

some 0 ≤ c ≤ Y . It is assumed that if the firms invest they engage in quantity

competition. If the market turns out to be bad, then the action to take is not to

produce, i.e. UL
L = UL

F = UL
M = 0. Suppose that there is one firm that invests in the

market first. This firm then is the Stackelberg leader.2 In case the market is good

the follower solves the following profit maximisation problem:

max
qF≥0

1
r qF [P (qL + qF )− c],

where r is the discount rate. This yields qF = Y−c−qL
2 . Using this reaction, the leader

maximises its stream of profits. Solving the corresponding maximisation problem

yields qL = Y−c
2 , which results in qF = Y−c

4 , and the payoffs UH
L = (Y−c)2

8r and

UH
F = (Y−c)2

16r , respectively. In case both firms invest simultaneously, the Cournot-

Nash outcome prevails. Straightforward computations yield UH
M = (Y−c)2

9r . Note that

UH
L > UH

M > UH
F .3

It is assumed that both firms have an identical belief p ∈ [0, 1] in the project

being good. This belief is assumed to be common knowledge. If the leader invests

at a point in time where the belief in a good project equals p, the leader’s ex ante

expected payoff equals

L(p) = p(UH
L − I) + (1− p)(−I) = pUH

L − I.

The follower only invests in case of a good project. Therefore, if the leader invests

when the belief in a good project equals p, the ex ante expected payoff for the

follower equals

F (p) = p(UH
F − I).

2It is assumed that firms can only set capacity once, thereby fixing the production level forever.

This resolves the commitment problem mentioned in Dixit (1980).
3The assumption of an infinite Stackelberg advantage may seem to be highly restrictive and

unrealistic. For our framework, however, this assumption is not essential. The main point is that it

should be the case that the first mover has a higher discounted present value if the market is good.

This could also be established by a temporary Stackelberg advantage.
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In case of simultaneous investment at belief p, each firm has an ex ante expected

payoff that equals

M(p) = pUH
M − I.

Define by pM the belief such that the ex ante expected profit for the follower equals

the ex ante expected profit of simultaneous investment, i.e. pM is such that F (pM ) =

M(pM ). Note that, when p ≥ pM , both firms will always invest simultaneously, i.e.

before the true state of the project is known, yielding payoffs

l(p) =











L(p) if p < pM ,

M(p) if p ≥ pM ,

for the leader and

f(p) =











F (p) if p < pM ,

M(p) if p ≥ pM ,

for the follower. A graphical representation of these payoffs is given in Figure 1.

0 1
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0 

Figure 1: Payoff functions.

At the moment that the investment opportunity becomes available, both firms

have an identical prior belief about the project yielding high revenues, say p0 ∈ (0, 1),

which is common knowledge. Occasionally, the firms obtain information in the form

of signals about the profitability of the project. These signals are observed by both

firms simultaneously and are assumed to arrive according to a Poisson process with

parameter µ > 0. Information arriving over time will in general be heterogeneous

regarding the indication of the profitability level of the project. We distinguish

two types of signals: a signal can either indicate high revenues (an h-signal) or low
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revenues (an l-signal). A signal revealing the true state of the project occurs with

the common knowledge probability λ > 1
2 , see Table 1.4

h l

H λ 1− λ

L 1− λ λ

Table 1: Conditional probabilities of h- and l-signals.

Let n denote the number of signals and let g and b be the number of h-signals

and l-signals, respectively, so that n = g+ b. Given that at a certain point in time n

signals have arrived, g of which were h-signals, the firms then calculate their belief

in a good project in a Bayesian way. Define k = 2g−n = g− b so that k > 0 (k < 0)

indicates that more (less) h-signals than l-signals have arrived. After defining the

prior odds of a bad project as ζ = 1−p0
p0

, it is obtained from Thijssen et al. (2003)

that the (conditional) belief in a good project is a function of k and is given by

p(k) =
λk

λk + ζ(1− λ)k
. (1)

Note that the inverse of this function gives the number of h-signals in excess of

l-signals that is needed to obtain a belief equal to p:

k(p) =
log( p

1−p) + log(ζ)

log( λ
1−λ)

. (2)

3 Exogenous Firm Roles

Before we turn to the case where it is endogenously determined which firm invests

first, we now look at the simpler case of exogenous firm roles. There are two sym-

metric cases, namely one being that only firm 1 is allowed to be the first investor and

the other being its symmetric counterpart. Suppose that only firm 1 is allowed to

be the first investor. Then firm 1 does not need to take into account the possibility

that firm 2 preempts. Firm 2 can choose between the follower role, i.e. waiting to

incur the second mover advantage, and investing at the same time as firm 1, i.e.

without waiting for the true state of the project to become known. These two cases

lead to different forms of competition if the project turns out to be profitable. In

the first case a Stackelberg equilibrium arises, whereas in the latter case a Cournot

4Without loss of generality it can be assumed that λ > 1

2
, since if the converse holds we can

redefine the h-signals to be l-signals and vice versa. Then a signal again reveals the true state of

the project with probability 1− λ > 1

2
. If λ = 1

2
the signal is uninformative and, consequently, the

value of waiting disappears.
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equilibrium is to be expected. Firm 1 should invest at the point in time at which

its belief in a good project exceeds a certain threshold. In case of the Stackelberg

equilibrium it holds that, analogous to Thijssen et al. (2003), that this threshold

belief, denoted by pL, is given by

pL =
1

Ψ(UH
L /I − 1) + 1

, (3)

where

Ψ =
β(r + µ)(r + µ(1− λ))− µλ(1− λ)(r + µ(1 + β − λ))

β(r + µ)(r + µλ)− µλ(1− λ)(r + µ(β + λ))
,

and

β =
r + µ

2µ
+ 1
2

√

( rµ + 1)2 − 4λ(1− λ).

Hence, as soon as p exceeds pL, the leader invests. Then, the follower immediately

decides whether or not to invest, based on the true state of the project that is

immediately revealed after the investment by the leader. Note that pL will not be

hit exactly, since the belief p(k) jumps alongside with the discrete variable k. Hence,

the leader invests when p = p(dkLe), where kL = k(pL).

The above story only holds if p(dkLe) < pM . If the converse holds, firm 1 knows

that firm 2 will not choose the follower role, but will invest immediately as well

yielding UH
M instead of UH

L if the project turns out to be good. Then a Cournot

equilibrium arises and the threshold in this case is equal to

p̃L =
1

Ψ(UH
M/I − 1) + 1

.

Note that since UH
L > UH

M it holds that p̃L > pL.

When p0 is contained in the region (pM , 1], both firms will immediately invest,

yielding for both a discounted payoff stream UH
M −I if the project is good, and −I if

the project is bad. Like in the Cournot equilibrium, here too the belief is such that

the follower prefers to receive the simultaneous investment payoff rather than being

a follower, implying that it takes the risk of making a loss that equals the sunk costs

of investment when the project value is low.

4 Endogenous Firm Roles

Let the firm roles now be endogenous, which implies that both firms can be the first

investor. Define the preemption belief, denoted by pP , to be the belief at which the

leader value equals the follower value, i.e. where L(pP ) = F (pP ) (cf. Figure 1).

This gives

pP =
I

UH
L − UH

F + I
. (4)
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Note that pP < pM . As soon as p reaches pP (if ever), both firms want to be the

leader and try to preempt each other, which erodes the option value of waiting.

It does not vanish completely, however, since L(pP ) > 0. This indicates that the

net present value of the investment of the preemptor is still positive. Furthermore,

define kP = k(pP ). For the analysis an important part is played by the positioning

of kL, which can be smaller or larger than kP . Since k is monotonically increasing

in p, from (3) and (4) it follows that

kL > kP ⇐⇒ Ψ <
UH
L − UH

F

UH
L − I

. (5)

Note that if kL > kP then dkLe ≥ dkP e. The right-hand side of the second inequality

in (5) can be seen as the relative price that the follower pays for waiting to obtain the

information spillover. Since Ψ decreases with λ and (in general) with µ (see Thijssen

et al. (2003)), Ψ increases with the value of the information spillover. For if Ψ is

low, the quality and the quantity of the signals are relatively high. Therefore, if a

firm becomes the leader it provides relatively less information to its competitor for

low values of Ψ compared to when Ψ is high. So, expression (5) implies a comparison

between the first mover advantage and the second mover advantage. In what follows

we consider the two cases dkLe ≥ dkP e and dkLe < dkP e.

4.1 The Case Where the Leader Advantage Outweighs the Infor-

mation Spillover

Suppose that dkLe ≥ dkP e. In this case firms start to duel over the leader role as

soon as k = dkP e, whereas an exogenously assigned leader would wait until k = dkLe.
This implies that firms try to preempt each other in investing in the project. We

apply the equilibrium concept introduced in Fudenberg and Tirole (1985), which

is extended for the present setting involving uncertainty in Thijssen et al. (2002),

to solve the game. In Appendix A a brief review of the appropriate strategy and

equilibrium concepts can be found. The application of this equilibrium concept

requires the use of several stopping times. Define for all starting points t0 ≥ 0,

T t0
P = inf{t ≥ t0|pt ≥ pP } and T t0

M = inf{t ≥ t0|pt ≥ pM}, where pt ≡ p(kt) and kt

is the number of h-signals in excess of l-signals at time t. Note that T t0
M ≥ T t0

P a.s.

for all t0 ≥ 0. In what follows we consider three different starting points, namely

pt0 ≥ pM , pP ≤ pt0 < pM and pt0 < pP .

If pt0 ≥ pM the value of simultaneous investment is greater than or equal to the

value of being the second investor. If the inequality is strict this implies that no firm

wants to be the follower and hence that both firms will invest immediately. If pt0 =
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pM firms are indifferent between being the follower and simultaneous investment.5

Next, let pP ≤ pt0 < pM be the starting point of the game. Both firms try

to preempt in this scenario, since the value for the leader is higher than the value

for the follower. This implies that in a symmetric equilibrium6 each firm invests

with a positive probability. Here both firms want to be the first investor, since the

expected Stackelberg leader payoff is sufficiently high. Equivalently, the belief in a

good project is sufficiently high for taking the risk that the project has a low payoff

to be optimal. On the other hand, if the firms invest with positive probability, the

probability that both firms simultaneously invest is also positive. This would lead

to the simultaneous investment (Cournot-Nash) payoff. However, since t0 < T t0
M this

payoff is not high enough for simultaneous investment as such to be optimal. We

conclude that there is a trade-off here between getting the high payoff as a leader

or a low payoff that is influenced by the risk of investing in a bad project as a

leader, the lower payoff of being the follower, and the lower payoff of (a suboptimal)

simultaneous investment. As is proved in Proposition 1 below, the probability that

a firm invests equals L(p)−M(p)
L(p)−2M(p)+F (p) . Hence, this probability decreases with the

difference between the leader and the simultaneous investment payoff. This happens

because if this difference is large the firms will try to avoid simultaneous investment

by lowering their investment probability.

From Thijssen et al. (2002) it is known that it is optimal if one of the two firms

invests as soon as the preemption region is reached. The equilibrium strategies are

such that the probability that at least one firm invests equals one.7 Since immedi-

ately after investment by the leader the follower decides on investment, the game

ends exactly at the point in time where the preemption region is reached. Again,

the position of pL is of no importance, since the leader curve lies above the follower

curve, implying that both firms will try to become the leader.

The last region is the region where pt0 < pP . As long as t0 ≤ t < T t0
P , the leader

curve lies under the follower curve, and since in this case kL ≥ kP , pL has not been

5Note that whether or not pM > pL is irrelevant. For suppose that pM ≤ pL. Then no firm

would be willing to wait until pL is reached, because of the sheer fear of being preempted by the

other firm.
6Since the firms are identical, a symmetric equilibrium seems to be the most plausible candidate.

See Thijssen et al. (2002) for a more elaborate discussion of this point.
7Note that the probability of simultaneous investment at T t0

P is strictly positive, even if t0 < T
t0
P .

This happens because the preemption point will not be hit exactly due to the discontinuity of the

stochastic process governing the evolution of p. In the standard game theoretic real options literature

(e.g. Weeds (2002)) one uses a less complicated equilibrium concept and simply assumes that the

probability of simultaneous investment at the preemption point equals zero. Such an assumption

would be unjustified here.
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reached yet. Hence, no firm wants to be the leader and both firms abstain from

investment until enough h-signals have arrived to make investment more attractive

than waiting.

Formally, the above discussion can be summarised in a consistent α-equilibrium.

This equilibrium concept for game theoretic real options models is described in detail

in Thijssen et al. (2002). The strategies used in these timing games consist of a

cumulative distribution function Gt0(·), where Gt0
i (t) gives the probability that firm

i has invested before and including time t ≥ t0, and an intensity function αt0(·).
The intensity function serves as an endogenous coordination device in cases where

it is optimal for one firm to invest but not for both. In coordinating firms make a

trade-off between succeeding in investing first and the risk of both investing at the

same time. For details, see Appendix A.

Proposition 1 If Ψ ≤ UH
L −UH

F

UH
L
−I

, then a symmetric consistent α-equilibrium is given

by the tuple of closed-loop strategies
(

(Gt
1, α

t
1), (G

t
2, α

t
2)
)

t∈[0,∞)
, where for i = 1, 2

Gt
i(s) =



























0 if s < T t
P ,

L(p
Tt
P
)−M(p

Tt
P
)

L(p
Tt
P
)−2M(p

Tt
P
)+F (p

Tt
P
) if T t

P ≤ s < T t
M ,

1 if s ≥ T t
M ,

(6)

αt
i(s) =



























0 if s < T t
P ,

L(p
Tt
P
)−F (p

Tt
P
)

L(p
Tt
P
)−M(p

Tt
P
) if T t

P ≤ s < T t
M ,

1 if s ≥ T t
M .

(7)

For a proof of this proposition, see Appendix B.

4.2 The CaseWhere the Information Spillover Outweighs the Leader

Effect

Suppose that pL < pP . Now the problem becomes somewhat different. Let t0 ≥ 0.

For t > T t0
P the game is exactly the same as in the former case. The difference arises

if t ≥ t0 is such that pt ∈ [pL, pP ). In this region it would have been optimal to invest

for the leader in case the leader role had been determined exogenously. However,

since the leader role is endogenous and the leader curve lies below the follower curve,

both firms prefer to be the follower. In other words, a war of attrition (cf. Hendricks

et al. (1988)) arises. Two asymmetric equilibria of the war of attrition arise trivially:

firm 1 invests always with probability one and firm 2 always with probability zero,
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and vice versa. However, since the firms are assumed to be identical there is no a

priori reason to expect that they coordinate on one of these asymmetric equilibria.

We know that the game ends as soon as T t0
P is reached. Note, however, that

before this happens pL can be reached several times, depending on the arrival of

h- and l-signals. There is a war of attrition for k ∈ K = {dkLe, . . . , dkP e − 1}. To

keep track of the points in time where a war of attrition occurs, define the following

increasing sequence of stopping times: T t0
1 = inf{t ≥ t0|pt = dpLe}, T t0

n+1 = inf{t >

T t0
n |∃k∈K : pt = p(k)}, n = 1, 2, 3, . . . , with the corresponding levels of h-signals

in excess of l-signals kn = k(p
T
t0
n
). Note that n is the number of signals that have

arrived up until and including time T t0
n since the first time the war of attrition region

has been reached.

To find a symmetric equilibrium we argue in line with Fudenberg and Tirole

(1991) that for each point in time during a war of attrition the expected revenue

of investing directly exactly equals the value of waiting a small period of time dt

and investing when a new signal arrives.8 The expected value of investing at each

point in time depends on the value of k at that point in time. Let kt ∈ K for some

t ≥ t0. Denoting the probability that the other firm invests at belief p(kt) by γ(kt),

the expected value of investing at time t equals

V1(pt) = γ(kt)M(pt) + (1− γ(kt))L(pt). (8)

The value of waiting for an infinitesimal small amount of time equals the weighted

value of becoming the follower and of both firms waiting, i.e.

V2(pt) = γ(kt)F (pt) + (1− γ(kt))Ṽ (pt), (9)

where Ṽ (p) is the value of waiting when neither firm invests. Let γ(·) be such that

V1(·) = V2(·).
To actually calculate γ(k) for all k ∈ K, we use the fact that only for certain

values of p the probability of investment needs to be calculated. These probabilities

are the beliefs that result from the signals, i.e. for the beliefs p such that p = p(k),

k ∈ K. For notational convenience we take k as dependent variable instead of p.

For example, we write V (k) instead of V (p(k)). To calculate the isolated atoms –

the probabilities of investment – in the war of attrition, γ(·), the value of waiting

Ṽ (·) needs to be determined. It is governed by the following equation:

Ṽ (k) =e−rdt{(1− µdt)Ṽ (k) + µdt[p(k)(λV1(k + 1) + (1− λ)V1(k − 1))+

+ (1− p(k))(λV1(k − 1) + (1− λ)V1(k + 1))]}.
(10)

8It might seem strange that a firm then also invests when a bad signal arrives. Note, however,

that it is always optimal for one firm to invest in the war of attrition region. The probability of

investment is most likely lower for lower values of p.
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Eq. (10) arises from equalizing the value of Ṽ (k) to the value an infinitesimally small

amount of time later. In this small time interval, nothing happens with probability

1−µdt. With probability µdt a signal arrives. The belief a firm has in a good project

is given by p(k). If the project is indeed good, an h-signal arrives with probability

λ, and an l-signal arrives with probability 1 − λ. Vice versa if the project is bad.

If a signal arrives then investing yields either V1(k + 1) or V1(k − 1). After letting

dt ↓ 0 and substituting eqs. (1) and (8) into eq. (10) it is obtained that

Ṽ (k) =
µ

r + µ

[λk+1 + ζ(1− λ)k+1

λk + ζ(1− λ)k
(

γ(k + 1)M(k + 1) + (1− γ(k + 1))

L(k + 1)
)

+ λ(1− λ)
λk−1 + ζ(1− λ)k−1

λk + ζ(1− λ)k
(

γ(k − 1)M(k − 1)

+ (1− γ(k − 1))L(k − 1)
)

]

.

(11)

Substituting eq. (11) into eq. (9) yields, after equating eqs. (9) and (8) and

rearranging:

akγ(k) + bk = (1− γ(k))(ckγ(k + 1) + dkγ(k − 1) + ek), (12)

where

ak =M(k)− L(k)− F (k),

bk =L(k),

ck =
µ

r + µ

λk+1 + ζ(1− λ)k+1

λk + ζ(1− λ)k
(

M(k + 1)− L(k + 1)
)

,

dk =
µ

r + µ
λ(1− λ)

λk−1 + ζ(1− λ)k−1

λk + ζ(1− λ)k
(

M(k − 1)− L(k − 1)
)

,

ek =
µ

r + µ

(λk+1 + ζ(1− λ)k+1

λk + ζ(1− λ)k
L(k + 1)

+ λ(1− λ)
λk−1 + ζ(1− λ)k−1

λk + ζ(1− λ)k
L(k − 1)

)

.

To solve for γ(·) note that if k < dkLe, no firm will invest, since the option value of

waiting is higher than the expected revenues of investing. Therefore γ(dkLe) = 0.

On the other hand, if k ≥ dkP e the firms know that they enter a preemption game,

i.e. γ(dkP e) = Gt
i(T

t
P ), where Gt

i(T
t
P ) can be obtained from Proposition 1. Note that

it is possible that dkP e = dkMe. Then the game proceeds from the war of attrition

directly into the region where simultaneous investment is optimal. This happens if

T t
M = T t

P . In this case the expected payoff is governed by M(·). For other values of
k, we have to solve a system of equations, where the k-th entry is given by eq. (12).

The complete system can be written as

diag(γ)Aγ +Bγ = b, (13)
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for appropriately chosen matrices A and B, and vector b. The system of equations

(13) cannot be solved analytically. However, for any specific set of parameter values,

a numerical solution can be determined. The following lemma shows that a solution

always exists. The proof can be found in Appendix C.

Lemma 1 The system of equations (13) has a solution. Furthermore, γ(k) ∈ [0, 1]

for all k ∈ K.

Define nt = sup{n|T t0
n ≤ t} to be the number of signals that has arrived up until

time t ≥ t0. In the following proposition a symmetric consistent α-equilibrium is

given.

Proposition 2 If Ψ >
UH
L −UH

F

UH
L
−I

, then a consistent α-equilibrium is given by the tuple

of closed-loop strategies
(

(Gt
1, α

t
1), (G

t
2, α

t
2)
)

t∈[0,∞)
, where for i = 1, 2

Gt
i(s) =











































0 if s < T t
1

∑ns
n=nt

γ(kn)
1−γ(kn)

∏n
n′=nt

(

1− γ(kn′)
)

if T t
1 ≤ s < T t

P ,

(

1−Gt
i(T

t
P−)

)
L(p

Tt
P
)−M(p

Tt
P
)

L(p
Tt
P
)−2M(p

Tt
P
)+F (p

Tt
P
) if T t

P ≤ s < T t
M ,

1 if s ≥ T t
M , or s > T t

P and H,

(14)

αt
i(s) =



























0 if s < T t
P ,

L(p
Tt
P
)−F (p

Tt
P
)

L(p
Tt
P
)−M(p

Tt
P
) if T t

P ≤ s < T t
M ,

1 if s ≥ T t
M .

(15)

The proof of Proposition 2 can be found in Appendix D.

An illustration of the case where the second mover advantage outweighs the first

mover advantage can be found in the following example.

Example 2 Consider a situation whose characteristics are given in Table 2. For

UH
L = 13.3 r = 0.1

UH
F = 13 µ = 2

UH
M = 13.2 λ = 0.7

I = 2 p0 = 0.5

Table 2: Parameter values.

this example the preemption belief equals pP = 0.87. The minimal belief that an

exogenous leader needs to invest optimally is given by pL = 0.51. Using eq. (2) this
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implies that a war of attrition arises for k ∈ {1, 2}. Solving the system of equations

given in (13) yields the vector of probabilities with which each firm invests in the

project. It yields γ(1) = 0.4547 and γ(2) = 0.7613.

From this example one can see that the probability of investment increases rapidly

and is substantial. Both firms know that, given that the project is good, it is better

to become the leader. So, as the belief in a good project increases, both firms invest

with higher probability.

5 Welfare Analysis

Welfare effects resulting from investment under uncertainty have been reported by

e.g. Jensen (1992b) and Stenbacka and Tombak (1994). In both papers the timing

of investment does not depend on the arrival of signals. In these papers the un-

certainty comprises the time needed to successfully implement the investment, i.e.

the time between investment and the successful implementation of the investment is

stochastic. The models in Jensen (1992b) and Stenbacka and Tombak (1994) allow

for the critical levels to be explicit points in time. In our model, the critical level

is not measured in units of time but measured as a probability, i.e. a belief. To

perform a welfare analysis, however, it is necessary to incorporate the time element

in the model.

For simplicity we only consider preemption cases (p0 < pP < pL). The resulting

equilibrium implies that as soon as dkP e is reached, at least one firm invests and

the game ends. We analyse two questions relating to welfare that, at first sight,

are expected to have obvious answers. First, we investigate if more and/or better

information leads to higher levels of expected ex ante welfare. Secondly, we analyse if

competition (in duopoly) is better from a social welfare point of view than monopoly.

Given the belief in a good project p ∈ [pP , pM ), the probability of simultaneous

investment, denoted by b(p), is given by (cf. (7) and (17)):

b(p) =
L(p)− F (p)

L(p)− 2M(p) + F (p)
.

Let CSl
M denote the discounted value of consumer surplus if the project is l ∈ {L,H}

and simultaneous investment takes place. Furthermore, let CSH
S and CSL denote

the infinite discounted stream of consumer surplus in the Stackelberg equilibrium if

the project is good, and the infinite discounted stream of consumer surplus if the

project is bad and one firm invests, respectively.

If the critical number of h-signals in excess of l-signals is given by k ≥ 0 with

first passage time t, the expected discounted total surplus if the project gives high
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revenues is given by

ESH(k, t) =e−rt
[

b(p(k))(2UH
M + CSH

M )

+
(

1− b(p(k))
)

(UH
L + UH

F + CSH
S )− 2I

]

,

whereas if the project gives a low revenue the expected total surplus equals

ESL(k, t) = e−rt
[

b(p(k))(CSL
M − 2I) +

(

1− b(p(k))
)

(CSL − I)
]

.

The expected total surplus with critical level k and first passage time t is then given

by

W (k, t) = p(k)ESH(k, t) + (1− p(k))ESL(k, t).

To incorporate the uncertainty regarding the first passage time through k, we

define the ex ante expected total welfare W (k) to be the expectation of W (k, t) over

the first passage time through k. That is,

W (k) = IEk

(

W (k, t)
)

=

∫ ∞

0
W (k, t)fk(t)dt,

(16)

where fk(·) is the probability density function (pdf) of the first passage time through

k.

The pdf of the first passage time through k ≥ 0 is given in the following propo-

sition, the proof of which can be found in Appendix E.

Proposition 3 Let k0 = 0 a.s. The probability density function fk(·) of the first

passage time through k ≥ 0 is given by

fk(t) =
λk+ζ(1−λ)k

1+ζ

(

λ(1− λ)
)−k/2 k

t
Ik(2µ

√

λ(1− λ)t)e−µt,

for all t ≥ 0. Here,

Iρ(x) =

∞
∑

l=0

1

l!Γ(l + ρ+ 1)

(x

2

)2l+ρ
,

is the modified Bessel function with parameter ρ and Γ(·) denotes the gamma func-

tion.

In the remainder, let CSmon and Wmon denote the present value of the infinite

flow of consumer surplus and the ex ante expected total surplus, respectively, in

the case of a monopolist. The critical level of investment for the monopoly case is

obtained from Thijssen et al. (2003). We use the economic situation described in

Example 1, i.e. a new market model with affine demand and linear costs. Consider

the parametrization as given in Table 3. From Example 1 we can conclude that
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Y = 5 r = 0.1

c = 2 p0 = 0.4

I = 5

Table 3: Parameter values.

the monopoly price is given by Pmon = Y+c
2 , the price in case of simultaneous

investment equals PM = Y+2c
3 , and the price in the Stackelberg case is given by

PS = Y+3c
4 . Given that the market is good, the flow of consumer surplus is then

represented by
∫ Y
PP

P−1(p)dp = 1
2(Y − PP )

2, where PP is the equilibrium price.

Hence, CSH
mon =

∫∞
0 e−rt 1

2(Y − Pmon)
2dt = (Y−Pmon)2

8r . Similarly, CSH
M = (Y−PM )

2

6r ,

CSH
S = (Y−PS)

2

32r , and CSL
mon = CSL

M = CSL = 0.

We want to analyse the effect of the quantity and quality of information on

welfare in both the monopolistic and the duopoly case. First, consider the case

where λ = 0.6 and µ varies from 2 up to 5. Calculations lead to Figure 2. As can
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Figure 2: Welfare as a function of µ.

be seen from the figure, one cannot derive a clear-cut result saying that competition

is better than monopoly or vice versa. This is caused by the discreteness of the

investment threshold. In the duopoly case a Stackelberg equilibrium arises for all

values of µ, while the investment threshold always equals dkde = 1. From (4) one

can see that pP is independent of both µ and λ and that k(p) is independent of µ.

Hence, dkde cannot differ for varying values of µ. As µ increases welfare improves,

because more information is (in this case) better. The jump in the curve for welfare

under monopoly occurs because at µ ≈ 3 the investment threshold dkme jumps from

1 to 2. This happens since km is increasing in µ, which implies that dkme exhibits
upward jumps for some values of µ, while it is constant otherwise. As soon as there

19



is a jump, the monopolist waits longer, which reduces both the risk of investing in a

bad market as well as expected consumer surplus. From the above it becomes clear

that the latter effect dominates, implying that the intuition that more information

is always better cannot be sustained.

Secondly, we analyse the effect of the quality of information on welfare by taking

µ = 4 and by letting λ vary from 0.55 to 0.8. This yields Figure 3. The jumps occur
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11

λ

W
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ar
e

monopoly
duopoly

Figure 3: Welfare as a function of λ.

due to the discreteness of the investment threshold just as before. We will describe

monopoly and duopoly separately to get some feeling for the different effects at

work. First, let us consider the monopoly case. At λ ≈ 0.575, dkme jumps from 1

to 2, which accounts for the drop in welfare. For the remainder of the domain, an

increase in λ reduces the risk of investment while the market is bad and accelerates

investment, which results in increasing expected consumer and producer surplus and

thus in higher welfare levels.

In the duopoly case there are more effects. The jump at λ ≈ 0.57 occurs since

dkde jumps from 2 to 1 (although pP remains constant), since less signals are needed

to reach pP . This is good for expected consumer surplus, hence the increase. For

λ between 0.57 and 0.635, a Stackelberg or a Cournot equilibrium arises. Welfare

decreases over this range since for increasing λ the probability of simultaneous in-

vestment at the preemption point increases monotonically.9 In case of simultaneous

investment both firms do not wait for the outcome of the other firm’s investment.

Hence, they both invest without knowing beforehand the state of the market. This

implies that in case of a bad market the sunk investment costs is lost twice for the

whole market. Therefore, the loss (due to sunk investment costs) in case the mar-

9This is not an analytical result. The probability of simultaneous investment can also decrease

with increasing λ.
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ket turns out to be bad is increasing in λ which has a negative effect on welfare.

From λ ≈ 0.635 onwards, a Cournot equilibrium arises where both firms always

invest simultaneous. Higher λ means that signals are more reliable. Therefore, the

probability of simultaneous investment in a bad market is smaller, which increases

expected producer surplus and thus enhances expected welfare, although the welfare

level is lower than under monopoly.

A final remark concerns the range where λ is in between 0.55 and 0.65. Here

dkme = 1 and dkde = 2, i.e. in a monopolistic market investment takes place at an

earlier date than in a duopoly, given an identical sample path of the information

process. This is due to the fact that the discounted value of the project is higher for

a monopolist than for a firm that faces competition. This higher discounted value

has a dampening effect on the waiting time.

From these examples two observations can be made. Firstly, more or better

information does not always lead to higher welfare. This is mainly due to opposing

effects influencing the expected producer surplus. Expected consumer surplus in

general increases in the quality and quantity of information. An exception arises in

the monopoly case where the threshold level dkme can jump upwards. This happens

because of the fact that the increase in the value of waiting delays investment, which

is bad for consumer surplus. In the duopoly case there is another effect regarding

the quality of information. In a range where both a Stackelberg and a Cournot-Nash

equilibrium can occur the probability of joint investment at the preemption point

can increase, if information gets qualitatively better. This has a negative influence

on producer surplus, since if the market turns out to be bad both firms will lose the

sunk costs I. The magnitude of these sunk-costs might not offset the increase in

expected consumer surplus due to earlier investment.

The second observation is that it is not clear whether a monopolistic or an

oligopolistic market structure is desirable from an ex ante social welfare perspective.

To get a better insight in this problem, consider an example with Y = 60, c = 20,

I = 500, p0 = 0.4 and r = 0.1. We take µ ∈ [0.5, 4] and λ ∈ [0.6, 0.9] and compare

welfare for monopoly and duopoly. This is depicted in Figure 4. From the figure one

gets the impression that ”bad” information (i.e. low µ and low λ) seems to favour

a duopolistic structure, whereas ”good” information (i.e. high µ and high λ) seems

to favour a monopolistic market structure.

To test this hypothesis we simulate the model. In each run we sample (Y − c) ∼
U [5, 50], where U denotes the uniform distribution and I ∼ U [ 14UH

F , 34U
H
F ]. The

interest rate is set to r = 0.1 and the prior belief in a good market at p0 =

0.4. We sample 1000 instances of ”bad” information with µL ∼ U [0.5, 1.5] and

λL ∼ U [0.6, 0.7], and 1000 instances of ”good” information with µH ∼ U [3, 4] and
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Figure 4: Regions of higher welfare (monopoly or duopoly) for different (µ, λ)-

combinations. Wmon (Wduo) denotes welfare in the monopoly (duopoly) case.

λH ∼ U [0.8, 0.9]. This leads to four series of simulated expected ex ante welfare lev-

els for monopoly and duopoly, WL
mon, W

L
duo, W

H
mon, and WH

duo. Since we hypothesise

that IE(WL
duo) > IE(WL

mon) and IE(WH
mon) > IE(WH

duo), we test the null-hypotheses

H0 : IE(W
L
duo−WL

mon) ≤ 0 and H0 : IE(W
H
mon−WH

duo) ≤ 0. Using standard asymptot-

ically normal tests, both null-hypotheses are rejected at 5%.10 So, we find evidence

that a duopoly leads to a significantly higher level of expected ex ante welfare than

monopoly if the information is relatively bad, whereas the reverse holds if informa-

tion is relatively good. Intuitively, one can see that if information is bad, the value

to wait for a monopolist is very low. Therefore, he will invest soon. On the other

hand, in the duopoly case, although the preemption level may be reached soon, the

probability of joint investment is low and this dampens the negative preemptive

effect on expected producer surplus. If information is good, firms are more likely to

simultaneously invest which is bad for expected producer surplus. So, in expectation

the preemption effect ”hurts” more if information is good. Moreover, the value of

waiting increases when signals become more valuable, or occur more frequently. In

the monopoly case this value of waiting is fully taken into account, whereas in a

duopoly firms still intend to invest quickly to preempt their rival.

In the above analysis only the preemption case is considered. From a mathemati-

cal point of view the advantage of considering the preemption case is that one knows

that the game stops as soon as the preemption level is reached. This allows for the

10Let (x1, . . . , xn) be a sample of iid draws with IE(x) = µ, V ar(x) = σ2, sample mean x̄, and

sample variance σ̂2. For testing H0 : µ ≤ 0 we use the test statistic T =
√
nx̄

σ̂2 , which under the

null-hypothesis has a standard normal distribution. In our case we get T = 4.45 and T = 30.60,

respectively.
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use of the distribution of the first passage time in the definition of ex ante expected

total surplus. In case the information spillover outweighs the Stackelberg effect a

war of attrition arises. To make a comparable welfare analysis for this case one has

to consider all possible paths for the arrival of signals before the preemption region

is hit. So, not only the distribution for the first passage time, but the distribution of

second, third, etc. passage times for values k ∈ K have to be considered, conditional

on the fact that the preemption value is not reached. Such an analysis is not analyt-

ically tractable. However, one could estimate the ex ante expected total surplus by

use of simulations. Also in this case ambiguous results regarding the welfare effects

of monopoly and duopoly can be expected, depending on the position of the critical

investment level for a monopolist relative to pL. An additional effect concerning the

welfare comparison of monopoly and duopoly in case of a war of attrition is the free

rider effect. In a duopoly both firms like the other to invest first so that it does not

need to take the risk that the project has low value. Consequently firms invest too

late, leading to a lower expected consumer surplus.

6 Conclusions

Non-exclusivity is a main feature that distinguishes real options from their financial

counterparts (Zingales (2000)). A firm having a real investment opportunity often

shares this possibility with one or more competitors and this has a negative effect

on profits. The implication is that, to come to a meaningful analysis of the value of

a real option, competition must be taken into account.

This paper considers a duopoly where both firms have the same possibility to in-

vest in a new market with uncertain payoffs. As time passes uncertainty is gradually

resolved by the arrival of new information regarding the quality of the investment

project in the form of signals. Generally speaking, each firm has the choice of being

the first or second investor. A firm moving first reaches a higher market share by

having a Stackelberg advantage. However, being the second investor implies that

the investment can be undertaken knowing the payoff with certainty, since by ob-

serving the performance in the market of the first investor it is possible to obtain

full information regarding the quality of the investment project.

The outcome mainly depends on the speed at which information arrives over

time. If the quality and quantity of the signals is sufficiently high, the information

advantage of the second investor is low so that the Stackelberg advantage of the

first investor dominates, which always results in a preemption game. In the other

scenario, initially a war of attrition prevails where it is preferred to wait for the

competitor to undertake the risky investment. During the time where this war of
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attrition goes on it happens with positive probability that both firms refrain from

investment. It can then be the case that so many bad signals arrive that the belief

in a good project again becomes so low that the war of attrition is ended and

that no firm invests for the time being. On the other hand, it can happen that so

many positive signals in excess of bad signals arrive that at some point in time the

Stackelberg advantage starts to exceed the value of the information spillover. This

then implies that the war of attrition turns into a preemption game.

From the industrial organisation literature it is known that a monopoly is bad for

social welfare. In our model the welfare issue is more complicated, mainly because

we look at expected ex ante social welfare. We find evidence that a duopolistic

market structure is more desirable in cases where there is few and qualitatively poor

information. On the other hand, a monopolistic market structure is better if quantity

and quality of information are high. The main reasons for this conclusion are, firstly,

the low expected producer surplus in the duopoly case due to a high probability of

simultaneous investment, resulting in a higher probability that both firms loose

the sunk investment costs. Secondly, if a lot of information arrives over time (in

expectation) the value of postponing investment increases. However, in a duopoly

framework the presence of competition still makes that investment takes place soon.

Furthermore, we show that more or better information does not necessarily lead to

higher expected welfare. In the monopoly case this is mainly due to the fact that,

again, more signals arriving over time raises the value of waiting. Therefore, the

monopolist delays investment, which is bad for consumer surplus. In the duopoly

case the resulting equilibrium market structure (Stackelberg or Cournot) plays an

important role.

Finally, departing from the modelling framework of this paper two interesting

topics for future research can be distinguished. Firstly, one could include the pos-

sibility for firms to invest in the quantity and quality of the signals. This would

then give rise to an optimal R&D model, that also includes the problem of optimal

sampling. Secondly, it is interesting to allow for entry and exit in this model. This

would then lead to an analysis of the optimal number of firms from a social welfare

perspective, thereby making it possible to compare with existing literature like e.g.

Mankiw and Whinston (1986).
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Appendix

A Equilibrium Concepts for Timing Games

In this appendix we briefly review the appropriate equilibrium concepts for game

theoretic real option models that are developed in Thijssen et al. (2002). Let

(Ω,F , (Ft)0≤t≤∞, P ) be a filtered probability space satisfying the usual hypothe-

ses, i.e. F0 contains all the P -null sets of F and the filtration (Ft)0≤t≤∞ is right-

continuous11. Let (Yt)t≥0 be a semimartingale on this filtered probability space.

First we define a simple strategy for the subgame starting at t0.

Definition 1 A simple strategy for player i ∈ {1, 2} in the subgame starting at

t0 ∈ [0,∞) is given by a tuple of real-valued functions (Gt0
i , αt0

i ) : [t0,∞) × Ω →
[0, 1]× [0, 1], such that for all ω ∈ Ω

1. Gt0
i (·, ω) is non-decreasing and right-continuous with left limits;

2. αt0
i (·, ω) is right-continuous with left limits;

3. if αt0
i (t, ω) = 0 and t = inf{u ≥ t0|αt0

i (u, ω) > 0}, then the right-derivative of

αt0
i (t, ω) exists and is positive.

Denote for all ω ∈ Ω the strategy set of simple strategies of player i in the subgame

starting at t0 ≥ 0 by Ss
i (t0, ω). Furthermore, define the strategy space by Ss(t0, ω) =

∏

i=1,2 S
s
i (t0, ω) and denote the strategy at t ∈ [t0,∞) by st0(t, ω) =

(

Gt0
i (t, ω),

αt0
i (t, ω)

)

i=1,2
.

For all ω ∈ Ω, the function Gt0
i is a cumulative distribution function where

Gt0
i (t, ω) is the probability that firm i has invested before or at time t. The function

αt0
i (·, ω) is called the atom function and it describes a sequence of atoms. The atom

function allows for coordination between firms in cases where investment by at one

firm is optimal, but simultaneous investment is not. The atom function replicates

discrete time results that are lost by modelling in continuous time. Briefly stated,

as soon as the atom function is non-zero a game is played where both players invest

with probability αi and αj , respectively. This game is repeated until at least one

firm invests. Let for all ω ∈ Ω and t0 ≥ 0, τ be defined as

τ = min
i=1,2

{inf{t ≥ t0|αt0
i (t, ω) > 0}}.

If one denotes by IP(i|τ) the probability that firm i invests at time τ and by IP(i,¬j|τ)
that firm i invests at time τ but firm j does not, the following probabilities that are

11
Ft =

⋂

u>t
Fu, all t, 0 ≤ t <∞.
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needed in the proofs of the propositions are obtained,

IP(i,¬j|τ) = α
t0
i (τ,ω)(1−α

t0
j (τ,ω))

α
t0
i (τ,ω)+α

t0
j (τ,ω)−α

t0
i (τ,ω)α

t0
j (τ,ω)

,

IP(j,¬i|τ) = (1−α
t0
i (τ,ω))α

t0
j (τ,ω)

α
t0
i (τ,ω)+α

t0
j (τ,ω)−α

t0
i (τ,ω)α

t0
j (τ,ω)

,

IP(i, j|τ) = α
t0
i (τ,ω)α

t0
j (τ,ω)

α
t0
i (τ,ω)+α

t0
j (τ,ω)−α

t0
i (τ,ω)α

t0
j (τ,ω)

,

IP(i|τ) = α
t0
i (τ,ω)

α
t0
i (τ,ω)+α

t0
j (τ,ω)−α

t0
i (τ,ω)α

t0
j (τ,ω)

.

(17)

The definition of simple strategies does not a priori exclude the possibility that

both firms choose an atom function that turns out to be inconsistent with the cumu-

lative distribution function Gt0(·, ω). In equilibrium it should naturally be the case

that inconsistencies of this kind do not occur. Therefore, we introduce the notion of

α-consistency.

Definition 2 A tuple of simple strategies
(

(Gt0
i , αt0

i )
)

i=1,2
for the subgame starting

at t0 ≥ 0 is α-consistent if for i = 1, 2 it holds that for all ω ∈ Ω and t ≥ t0,

αt0
i (t, ω)− αt0

i (t−, ω) 6= 0⇒ Gt0
i (t, ω)−Gt0

i (t−, ω) =

=
(

1−Gt0
i (t−, ω)

) αt0
i (t, ω)

αt0
i (t, ω) + αt0

j (t, ω)− αt0
i (t, ω)αt0

j (t, ω)
.

An α-equilibrium for the subgame starting at t0 ≥ 0 is then defined as follows.

Definition 3 A tuple of simple strategies s∗ =
(

s∗(ω)
)

ω∈Ω
, s∗(ω) ∈ Ss(t0, ω), all

ω ∈ Ω, is an α-equilibrium for the subgame starting at t0 if for all ω ∈ Ω, s∗(ω) is

α-consistent and

∀i∈{1,2}∀si∈Ssi (t0,ω) : Vi(t0, s
∗(ω)) ≥ Vi(t0, si, s

∗
−i(ω)).

A problem with α-equilibrium is that it does not exclude time inconsistent strategies.

To rule these out we need the notion of closed loop strategy.

Definition 4 A closed loop strategy for player i ∈ {1, 2} is for all ω ∈ Ω a collection

of simple strategies
(

(Gt
i(·, ω), αt

i(·, ω))
)

0≤t<∞
,

with (Gt
i(·, ω), αt

i(·, ω)) ∈ Ss
i (t, ω) for all t ≥ 0 that satisfies the following intertem-

poral consistency conditions for all ω ∈ Ω:

1. ∀0≤t≤u≤v<∞ : v = inf{τ > t|Yτ = Yv} ⇒ Gt
i(v, ω) = Gu

i (v, ω);

2. ∀0≤t≤u≤v<∞ : v = inf{τ > t|Yτ = Yv} ⇒ αt
i(v, ω) = αu

i (v, ω).
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The set of closed loop strategies for player i ∈ {1, 2} is denoted by Scl
i (ω). As before,

we define the strategy space to be Scl(ω) =
∏

i∈{1,2} S
cl
i (ω).

A consistent α-equilibrium is now defined as follows.

Definition 5 A tuple of closed loop strategies s̄ =
(

s̄(ω)
)

ω∈Ω
, s̄(ω) ∈ Scl(ω), all

ω ∈ Ω, is a consistent α-equilibrium if for all t ∈ [0,∞), the corresponding tuple of

simple strategies
(

(

Gt
1, α

t
1

)

,
(

Gt
2, α

t
2

)

)

is an α-equilibrium for the subgame starting

at t.

B Proof of Proposition 1

Let (Ω,F , (Ft)t≥0, P ) be the filtered probability space underlying the stochastic

process governing the arrival of signals. First notice that for each ω ∈ Ω and i = 1, 2,

the strategy (Gt
i, α

t
i)t∈[0,∞) satisfies the intertemporal consistency and α-consistency

conditions of Definitions 4 and 2, respectively. Hence, the closed loop strategies are

well-defined. Let t ∈ [0,∞). It will be shown that (Gt
i, α

t
i)i=1,2 is an α-equilibrium

for the game starting at t. Due to discounting, it is a dominant strategy to invest

with positive probability only at points in time when new information arrives. Since

pt has non-continuous sample paths, due to the Poisson arrivals of signals, the cdf

Gt(·) has to be a step function. We consider three cases.

1. t = T t
M (i.e. pt ≥ pM )

Given that firm j plays its closed loop strategy, firm i has three possible

strategies. First, firm i can play Gt
i(t) = 0, i.e. it does not invest. Then firm

i’s expected payoff equals F (pt). If firm i invests with an isolated atom equal

to ν > 0, then the expected payoff equals F (pt) + ν(M(pt) − F (pt)) ≥ F (pt).

Finally, suppose that αt
i(t) = a > 0. From (17) one can see that, since αt

j(t) =

1, the expected payoff for firm i is given by

1
a+αtj(t)−aαtj(t)

(

a(1− αt
j(t))L(pt) + (1− a)αt

j(t)F (pt) + aαt
j(t)M(pt)

)

= F (pt) + a(M(pt)− F (pt)) ≥ F (pt).

So, maximizing the expected payoff gives a = 1.

2. t < T t
P (i.e. pt < pP )

Given the strategy of firm j, if firm i does not invest, its value is W (pt). Since

TL ≥ TP , we know it is not optimal to invest yet. Hence, W (pt) > L(pt). If

firm i invests with an isolated atom equal to ν > 0, then its expected payoff

equals W (pt)+ν(L(pt)−W (pt)) ≤W (pt). Investing with an interval of atoms,

i.e. αt
i(t) = a > 0, gives an expected payoff equal to L(pt). Hence it is optimal

to set Gt
i(t) = 0.
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3. t = T t
P < T t

M (i.e. pP ≤ pt < pM )

Investing with probability zero, i.e. Gt
i(t) = 0 yields an expected payoff equal

to F (pt), given that firm j plays its strategy, i.e. Gt
i(t) = 1. If firm i invests

with an isolated jump equal to ν > 0, then

IP(both firms invest simultaneously) = ναt
j(t),

IP(firm i invests first) = ν(1− αt
j(t)),

IP(firm j invests first) = 1− ν.

Given αt
j(t) =

L(t)−F (t)
L(t)−M(t) the expected payoff for firm i is given by

ναt
j(t)M(pt) + ν(1− αt

j(t))L(pt) + (1− ν)F (pt) = F (pt).

Finally, if firm i plays αt
i(t) = a > 0, then the expected payoff is given by

1
a+αtj(t)−aαtj(t)

(

aαt
j(t)M(pt) + a(1− αt

j(t))L(pt) + (1− a)αt
j(t)F (pt)

)

= F (pt).

From these cases we deduce that unilateral deviations do not yield higher expected

profits, which proves the proposition. ¤

C Proof of Lemma 1

It is easy to see that the war of attrition region K is finite with cardinality, say, n.

Hence, the system in (13) gives rise to a function f : IRn → IRn where the k-th entry

is given by

fk(x) = akxk + bk − (1− xk)
(

ckxk+1 + dkxk−1 − ek
)

, k = 1, . . . , n.

A solution for the system (13) is equivalent to x ∈ IRn such that f(x) = 0.

Let k ∈ K and let x ∈ IRn such that xk = 1 be fixed. We have

fk(x) = ak + bk = M(k)− L(k)− F (k) + L(k) < 0, (18)

since we are in the attrition region.

Furthermore, note that

bk − ek =
λk

λk + ζ(1− λ)k

(

UH
L

µ

r + µ
(λUH

L + (1− λ)UH
L )
)

−
(

1− µ

r + µ

λk+1 + ζ(1− λ)k+1 + λ(1− λ)(λk−1 + ζ(1− λ)k−1)

λk + ζ(1− λ)k

)

I

= µ
r

(

p(k)UH
L − I

)

= µ
rL(k) > 0.
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Using this observation we obtain that if x ∈ IRn is such that xk = 0,

fk(x) = bk − ek − ckxk+1 − dkxk−1

=
µ

r
L(k)− µ

r + µ

λk+1 + ζ(1− λ)k+1

λk + ζ(1− λ)k
xk+1

(

M(k + 1)− L(k + 1)
)

− µ

r + µ

λk−1 + ζ(1− λ)k−1

λk + ζ(1− λ)k
xk−1

(

M(k − 1)− L(k − 1)
)

> 0,

(19)

since M(k) ≤ L(k) for all k ≤ dkP e.
Hence, for all k ∈ K and all x ∈ IRn we have xk = 0 ⇒ fk(x) > 0 and

xk = 1⇒ fk(x) < 0. Since [0, 1]n is a convex and compact set and f(·) is continuous
on [0, 1]n, there exists a stationary point x∗ ∈ [0, 1], i.e. for all x ∈ [0, 1]n it holds

that xf(x∗) ≤ x∗f(x∗).

Let k ∈ {1, . . . , n}. Suppose that x∗k > 0. Then there exists an ε > 0 such that

x = x∗−ε1k ∈ [0, 1]n, where 1k denotes the k-th unity vector. This gives fk(x
∗) ≥ 0.

Similarly, if x∗k < 1 there exists an ε > 0 such that x = x∗ + ε1k ∈ [0, 1]n. Since x∗

is a stationary point this yields fk(x
∗) ≤ 0. Hence, if 0 < x∗k < 1 this implies that

fk(x
∗) = 0. Now suppose that x∗i = 0. Then fk(x

∗) ≤ 0, which contradicts (19).

Finally, suppose that x∗i = 1. Then fk(x
∗) ≥ 0, which contradicts (18). ¤

D Proof of Proposition 2

By Lemma 1 there exists a x ∈ [0, 1]n such that f(x) = 0. For all k ∈ K, let

γ(k) = xk. Furthermore, it is easy to see that (Gt
i, α

t
i)i=1,2 satisfies the intertemporal

and α-consistency conditions for each t ∈ [0,∞).

We prove that for each subgame starting at t, the simple strategy (Gt
i, α

t
i) is an

α-equilibrium. The case where t is such that pt < pL is exactly the same as the

case where t < T t
P < T t

M in the proof of Proposition 1. The same holds true for the

case where t = T t
M . Consider the region for the war of attrition, i.e. t is such that

pt ∈ [pL, pP ). Then kt ∈ K. Suppose that firm i invests with an interval of atoms

and suppose αt
i(t) = a. Then given that firm j invests with an isolated jump equal

to γ(kt). In analogy of (17) we get

IP(firm i invests first) = 1− γ(kt),

IP(firm j invests first) = γ(kt)(1− a),

IP(firms invest simultaneously) = aγ(kt).

Hence, the expected payoff for firm i is given by

aγj(kt)M(pt) + (1− γj(kt))L(pt) + γj(kt)(1− a)F (pt).
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This expected payoff is maximised for a = 0. Hence, firm i will not play an interval of

atoms. Suppose firm i plays an isolated atom equal to ν ∈ [0, 1]. Then his expected

payoff equals

νV1(pt) + (1− ν)V2(pt),

and is hence independent of ν since, by definition, γj(kt) is such that V1(pt) = V2(pt).

Therefore, any ν ∈ [0, 1], and in particular ν = γ(kt), maximises the expected payoff.

¤

E Proof of Proposition 3

The proof follows along the same lines as Feller (1971, Section 14.6). Note that the

process starts at t0 = 0 with k0 = 0 a.s. Arriving at k 6= 0 at time t > 0 can only

be possible if a jump has occurred before t. Assume that the first jump occurred at

time t−x. The conditional probability of the position k 6= 0 at time t is denoted by

Pk(t). It is the convolution of the probability that the process was at k + 1 at time

x or at k− 1 at time x and the probability of an arrival of an l-signal or an h-signal,

respectively. Since the arrival of signals follows a Poisson process with parameter

µ and hence the inter-arrival times are exponentially distributed with parameter µ,

Pk(t) is given by

Pk(t) =

∫ t

0
µe−µ(t−x)

[

q1(k − 1)Pk−1(x) + q2(k + 1)Pk+1(x)
]

dx, (20)

where

q1(k − 1) =
λk + ζ(1− λ)k

λk−1 + ζ(1− λ)k−1
, (21)

is the probability of reaching state k from state k − 1 and

q2(k + 1) = λ(1− λ)
λk + ζ(1− λ)k

λk+1 + ζ(1− λ)k+1
, (22)

is the probability of reaching state k from state k+1. That is, Pk(t) is the convolution

of the distribution of reaching k + 1 or k − 1 at time t − x and the distribution of

the arrival of one signal in the interval (t − x, t]. For k = 0, the probability of no

jump up to t, 1−
∫ t
0 µe−µtdt = e−µt must be added, i.e.

P0(t) = e−µt +

∫ t

0
µe−µ(t−x)

[

q1(−1)P−1(x) + q2(1)P1(x)
]

dx, (23)

Denoting the Laplace transform of Pk(·) by πk(·) we get from eqs. (20) and (23)

πk(γ) =
µ

µ+ γ
[q1(k − 1)πk−1(γ) + q2(k + 1)πk+1(γ)] for k 6= 0, (24)

π0(γ) =
1

µ+ γ
+

µ

µ+ γ
[q1(−1)π−1(γ) + q2(1)π1(γ)]. (25)
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By substituting eqs. (21) and (22) into eq. (24) one obtains the following second

order linear difference equation

µλ(1− λ)Fk+1(γ)− (µ+ γ)Fk(γ) + µFk−1(γ) = 0, (26)

where

Fk(γ) =
πk(γ)

λk + ζ(1− λ)k
.

The roots of the characteristic equation of eq. (26) are

βγ =
µ+ γ −

√

(µ+ γ)2 − 4µ2λ(1− λ)

2µλ(1− λ)
,

and

σγ =
µ+ γ +

√

(µ+ γ)2 − 4µ2λ(1− λ)

2µλ(1− λ)

=
4µ2λ(1− λ)

2µλ(1− λ)
(

µ+ γ −
√

(µ+ γ)2 − 4µ2λ(1− λ)
)

=
1

λ(1− λ)
β−1γ .

The general solution for k 6= 0 is therefore given by

Fk(γ) = Aγβ
k
γ +

1

λ(1− λ)
Bγβ

−k
γ .

Note that for k ≥ 0 it holds that βk
γ → 0 as γ → ∞, but that σk

γ → ∞ as γ → ∞.

Since πk(γ) and hence Fk(γ) are bounded as γ →∞, we get for k ≥ 0 that Bγ = 0.

Similarly, we get for k ≤ 0 that Aγ = 0. So, a solution to eq. (26) is given by

Fk(γ) =







F0(γ)β
k
γ k ≥ 0

1
λ(1−λ)F0(γ)β

−k
γ k < 0,

and hence,

πk(γ) =







λk+ζ(1−λ)k

1+ζ βk
γπ0(γ) k ≥ 0

λk+ζ(1−λ)k

1+ζ
1

λ(1−λ)β
−k
γ π0(γ) k < 0,

(27)

Solving for π0(γ) using eq. (25) gives

π0(γ) =
1

βγ

λ(1− λ)

(µ+ γ)λ(1− λ)− µ(1 + λ2(1− λ)2)
.

Hence, eq. (27) is well-defined.

If at time t the process is at k ≥ 0, the first passage through k must have occurred

at time τ ≤ t. In this case, the conditional probability of being at k again at time
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t equals the probability of being at state 0 at time t − τ times the probability of a

first passage through k at time τ , i.e.

Pk(t) =

∫ t

0
Fk(τ)P0(t− τ)dτ, (28)

where Fk(·) is the distribution of the first passage time through k. The Laplace

transform of eq. (28) is given by

πk(γ) = fk(γ)π0(γ).

From eq. (27) we therefore conclude that the Laplace transform of Fk(·) equals

fk(γ) = λk+ζ(1−λ)k

1+ζ βk
γ . Feller (1971) shows that for γ > 1, (γ −

√

γ2 − 1)k is the

Laplace transform of the density k
t Ik(t). Applying the mapping γ 7→ γ

2µ
√

λ(1−λ)
is a

change of scale and applying the mapping γ 7→ γ + µ reflects multiplication of the

density by e−µt. Applying both mappings gives

(γ −
√

γ2 − 1)k 7→
(

γ + µ−
√

(γ + µ)2 − 4µ2λ(1− λ)

2µ
√

λ(1− λ)

)k

=
λk + ζ(1− λ)k

1 + ζ
βk
γ

(

1 + ζ

λk + ζ(1− λ)k
(

λ(1− λ)
)k/2

)

.

Hence, the pdf of the first passage time through k is given by

fk(t) =
λk+ζ(1−λ)k

1+ζ

(

λ(1− λ)
)−k/2 k

t
Ik(2µ

√

λ(1− λ)t)e−µt,

which proves the proposition. ¤
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