Neuroscience

Senior Sophister Course Handbook

2018–2019
Contents

Foreword 3

Course co-ordinator contact details 4

Senior Sophister Class list 2018-19 / Teaching Staff 5

Course structure and Important Dates 6

Module Summaries 7-30

- PGU44004 7
- NSU44020 10
- NSU4PH2 13
- BIU44445 15
- BIU44455 19
- GEU44500 22
- BIU44415 25
- NSU44490 27

Attendance & Submission deadlines for coursework 31

Recommended Textbooks and Websites 32-33

Examinations 34

Structure of Marks for Moderatorship in Neuroscience 36

Plagiarism 37

Class Descriptors 41-42

General statement on the course 43-44

Appendix: Instructions for writing reports 45-52

Neurosoc 31

My Career 54-55

Contacts 56
Foreword

This Handbook has been prepared as a guide to the Senior Sophister year and contains information regarding the course content, course assessment, timetables, reading lists, guidance about conducting and writing up your final year project and also material on plagiarism and basic laboratory information. Due to the multidisciplinary nature of Neuroscience, the Senior Sophister year will be demanding and will require you to be committed to your course. Students are expected to work hard and to take responsibility for their learning. However, you should always feel free to seek advice and guidance from members of teaching staff.

The Junior Sophister year laid solid foundations in various aspects of Neuroscience as well as conferring transferable skills in areas such as data handling, computing and written and oral communication skills. Throughout the course of the Senior Sophister year you will gain a more broad-based and in-depth knowledge of Neuroscience from both theoretical and practical standpoints and further develop your transferable skills. You are expected to supplement your lecture courses with additional reading – your lecturers will recommend key references. In addition, a major part of the Senior Sophister year is an individual research project with literature review that counts for 33% of your Senior Sophister year marks. Research projects will be offered at the beginning of semester 1 and allocated within a few weeks. A major emphasis is placed on the research project and your time spent in the laboratory will help you decide if a career as a research scientist is one that you want or do not want! It is a time to discover if you have a talent for scientific research and you will have ample opportunity to ask advice from your supervisors as well as your laboratory colleagues.

In addition to learning within the context of formal lecture and research sessions, we encourage co-operation with your fellow students, so as you can learn from each other along the way. It is said that the clearest demonstration of understanding of a concept is the ability to explain this concept to another! Peer to peer learning helps everyone involved!

We wish you every success over the next year.

Dr Colm Cunningham & Dr Gavin Davey
SS Neuroscience Coordinators
September 2018

The Neuroscience degree program is funded by the Irish government under the National Development Plan 2007-2013 and aided by the European Social Fund (ESF) under the Human Capital Investment Operational Programme 2007-2013.

Timetables
We will provide a timetable for Semester 1 in the first instance. However this is subject to change as circumstances dictate.

The module timetables are available through the TCD portal via my.tcd.ie. These can be searched for by module code and may be updated from time to time, so please monitor there for any changes.

NOTE: There is now also the “Trinity MyDay” app, which gives ready access to timetable information. While popular for obvious reasons, our experience of this so far has been that it is not updated in real time in line with changes that staff may need to make to the timetable from time to time. The TCD portal my.tcd.ie remains the source of authoritative information. Changes required at short notice will communicated to you directly by e-mail.

Direct queries should be made to the course administrator in the first instance or to the SS Course co-ordinator if necessary.

Course administrator

Gabrielle McCabe
Room 3.07, Biochemistry School Office, TBSI, Pearse St.
+353-1-8964195
gamccabe@tcd.ie

Course Co-ordinator (Senior Sophister year)

Dr Colm Cunningham
Room 6.05
Trinity Biomedical Sciences Institute
Pearse Street
+353-1-896 3964
E-mail: colm.cunningham@tcd.ie

Degree Co-ordinator

Dr Gavin Davey
Room 5.06
School of Biochemistry & Immunology
Trinity Biomedical Sciences Institute
Phone: +353-1-896 8408
E-mail: gdavey@tcd.ie
Class List

Logan, Arnold
Byrne, Garreth
Cregan, Oisin
Croghan, Aileen
Doyle, Kieron
Farrell, Cliona
Flannery Mason, Kasha
Giffney, Daniel
Harbison, Caroline
Hayes, Adrian
Hynes, Andrew
Lambe, Jessica Beth
Leavy, Eva
Moustafa, Amina Yasser
Natin, Thomas
O’Brien, Aisling
O’Doherty, Cliona
Reilly, Eoghan
Scarry, Philip
Stiobhairt, Erika
Ussher, Shaun
Woods, Hanan

Teaching staff: Senior Sophister Neuroscience program

Dr Jerrard Hayes, School of Biochemistry & Immunology (jehayes@tcd.ie)
Dr. Colm Cunningham, School of Biochemistry & Immunology (colm.cunningham@tcd.ie)
Prof. Gavin Davey, School of Biochemistry & Immunology (gdavey@tcd.ie)
Dr. Tomas Ryan, School of Biochemistry & Immunology (tomas.ryan@tcd.ie)
Dr. Aisling Dunne, School of Biochemistry & Immunology/Sch. Medicine (aidunne@tcd.ie)
Dr James Murray, School of Biochemistry & Immunology (james.murray@tcd.ie)
Dr. Andrew Harkin, School of Pharmacy and Pharmaceutical Sciences (aharkin@tcd.ie)
Dr. Pablo Labrador, School of Genetics and Microbiology (jp.labrador@tcd.ie)
Prof. Marina Lynch, Dept. of Physiology, School of Medicine (lynchma@tcd.ie)
Prof. Kevin Mitchell, School of Genetics and Microbiology (kevin.mitchell@tcd.ie)
Prof. Mark Cunningham, Dept. of Physiology, Sch of Medicine (mark.cunningham@tcd.ie)
Overview

Course structure

<table>
<thead>
<tr>
<th>Module code</th>
<th>Module title</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIU-44445</td>
<td>Neurochemistry II</td>
<td>5</td>
</tr>
<tr>
<td>GEU44500</td>
<td>Neurogenetics</td>
<td>5</td>
</tr>
<tr>
<td>NSU44020</td>
<td>Integrative Neuroscience</td>
<td>5</td>
</tr>
<tr>
<td>PGU44004</td>
<td>Neurophysiology II</td>
<td>5</td>
</tr>
<tr>
<td>BIU44455</td>
<td>Neuroimmunology & Neurodegeneration</td>
<td>5</td>
</tr>
<tr>
<td>NSU44PH2</td>
<td>Neuropharmacology</td>
<td>5</td>
</tr>
<tr>
<td>BIU44415</td>
<td>Research Literature Skills (Neuroscience)</td>
<td>10</td>
</tr>
<tr>
<td>NSU44490</td>
<td>Research Project</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

Important Dates

- **Semester 1 (teaching)**: Monday 10th September – Friday 30th November
- **Semester 2**: Monday 21st January – Friday 12th April
- **Project Choices Due**: Friday 21st September (5pm)
- **Literature Review Due**: Friday 26th October (12 noon)
- **Project design seminar**: Week beginning 15th October (2-5pm)
- **Research Project**: Monday 29th October
- **Semester 1 exams**: Week beginning December 10th
- **Research Project Ends**: Friday 22nd February
- **Thesis Submission Due**: Friday 15th March (2 pm)
- **Poster Presentations**: Friday 22nd March (2-5pm; provisional)
- **Semester 2 Exams**: Week commencing April 22nd
Programme Structure: Module Summaries

PGU-44004: Neurophysiology II (Semester 1)

Credits: 5

Mode of Assessment: End of semester examination

(a) The biology of glial cells (Michaelmas term)

Credit weighting: 2.5 ECTS

Lecturer: Prof. M. Lynch

Description of course:

The course is designed to explore the neurobiology of glia and assess the impact of glia on nervous system function. The first part of the course is designed to provide an understanding of microglial plasticity and appreciate their ability to adopt different phenotypes. The diverse roles of microglia will be considered. Special focus will be placed on their phagocytic role and the changes that occur in microglia to facilitate phagocytosis. The importance of cytoskeletal proteins in enabling phagocytosis will be explored.

Astrocytes are the most prevalent glial cell in the brain and the course will continue by exploring the many functions of astrocytes from the very well defined role in providing metabolic support to neurons to the finding that astrocytes, like microglia, are active players in cerebral innate immunity. The role of astrocytes in blood brain barrier function will be described and the impact of changes in blood brain barrier permeability will be considered.

Microglia, and also astrocytes, are the primary cytokine-producing cells in the brain and the course will continue by examining the broad family of cytokines, their functions in the brain and the signaling cascades induced by interaction of specific cytokines with their receptors. A special focus will be placed on interleukin-1β and the inflammasome. The impact of some named cytokines on neuronal function will be explored.

In the course of the lecture series reference will be made to neurological and neurodegenerative conditions and the possible contribution of glia to development and/or progression of the conditions will be considered.

On completion of this module, students should

1. Understand the diverse roles of microglia and the impact of microglia on neuronal function.
2. Appreciate the diversity of microglial phenotypes and the effects of various stimuli
3. Add to their understanding of the importance of cytoskeletal proteins in cell function and appreciate the fact that the role cytoskeletal proteins extend well beyond the important function of providing support for the cell.
4. Understand some of the functions of astrocytes and the impact of astrocytes on neuronal function.
5. Understand the structure and function of the blood brain barrier, the pivotal role of astrocytes in barrier function, and the fact that barrier changes occur in disease.
6. Gain an understanding of the broad family of pre-inflammatory (with a focus on IL-1β and the inflammasome) and anti-inflammatory cytokines, their receptors and the signaling induced by specific cytokines, the cell source of cytokines and the effect of cytokines on the major cell types in the brain.
7. Appreciate the potential contribution of glia to development and/or progression of neurological and neurodegenerative diseases.

Reading/Learning Resources:

Reading material will be suggested throughout the course.

(b) Advanced Topics in Neurophysiology

Term: Semester 1
Credit weighting: 2.5 ECTS
Lecturer: Prof. Mark Cunningham

Module Description:

This module focuses on the physiological properties of neurons, synaptic transmission and synaptic plasticity. In particular, the module builds on knowledge acquired from PG3360 and describes, in-depth, biophysical membrane properties of neurons including membrane resistance and capacitance; time and length constants; ion fluxes and permeabilities and membrane potential, Nernst equilibrium potentials and the GHK equation for determining membrane potential; electrical properties of neurons; Hodgkin-Huxley recording of the squid action potential and modern electrophysiological techniques; the quantal nature and probability of neurotransmitter release; molecular features of ion channels including conductance, selectivity filters and gating; integrative properties of neurons, dendrites, and dendritic conductance; spatial and temporal summation; synaptic plasticity mechanisms; neuronal and network functions, oscillatory networks, pacemakers, resonators and rebound activity. The module also describes methodology for investigating neuronal function e.g. current and voltage-clamping, patch-clamping and optogenetics.
Details of the module:

Membrane Potential
Ionic Channels and Currents
Electrical Properties of Neurons
Electrical Properties of Neurons
Electrophysiological Techniques
Synaptic Transmission
Neuronal firing Patterns
Neural Plasticity

TOTAL HOURS 8 h

Learning Outcomes:

Students should have in-depth knowledge of:

- the biophysical properties of neurons of the CNS.
- Ion fluxes that generate the resting membrane potential of a neuron.
- The electrical properties and passive membrane properties of neurons.
- electrophysiological techniques for the recording of potentials and currents from brain cells including whole-cell and single channel currents.
- properties of acetylcholine, glutamate and GABA-evoked synaptic potentials/currents.
- synaptic plasticity of glutamate transmission including the mechanisms underlying the induction and expression of long-term potentiation and depressions.

Assessment: Examination (100%)

Reading/Learning Resources:

NSU44020 Integrative Neuroscience (Semester 1)

Credits: 5

Mode of Assessment: Continuous assessment and end of semester examination

Lecturer: Dr. Tomás Ryan

Description of course: (14 lectures and 3 tutorials) In-course assessment comprised of oral presentation (20%) and essay (40%). Remainder assessed by examination (40%).

The intention of this course is firstly to provide students with a firm grounding in the sub-fields of neuroscience that are conventionally referred to as systems neuroscience, cognitive neuroscience and behavioral neuroscience; and secondly to introduce students to integrative frameworks for synthesizing existing neuroscience literature from different fields and for orientating to hypothesis driven and explanatory research. Students will learn how to approach any brain function (e.g. learning and memory) from a functional and evolutionary standpoint, and will apply heuristic conceptual and computational approaches for developing frameworks within hypotheses can be developed. They will learn how such hypotheses can be tested through multi-disciplinary research projects that combine behavioral, cognitive, physiological and molecular investigations of brain function using cutting edge experimental methods. They will learn how to assess such the validity and quality of such research with the utmost skepticism. They will learn how outcomes of progressive experimental investigations can develop and refine theories that aim to explain the brain and behavior. This Junior Sophister module is designed to be comprehensive, in order to provide all students with a firm and holistic platform that can be applied to students’ interpretation of other courses and/or of their own independent reading and research.
MODULE DESCRIPTION

LEARNING OUTCOMES

- understand the historical origins of the scientific study of behavior in ethology and experimental psychology.
- appreciate different cognitive and computational frameworks in which to explain behavior.
- develop a working knowledge of neural circuit organization and function.
- understand the methodology and interpretation of data from widely used technology and methods of modern neuroscience research.
- understand core concepts & current topics in the neuroscience of movement.
- understand core concepts & current topics in the neuroscience of perception.
- understand core concepts & current topics in the neuroscience of emotion and motivation.
- understand core concepts & current topics in the neuroscience of learning and memory.
- understand core concepts & current topics in the neuroscience of decision making.
- understand core concepts & current topics in the neuroscience of organismic homeostasis.
- appreciate different empirical approaches to the neuroscience of consciousness.
- appreciate the role of evolutionary biology in explaining neuroscience and behavior, and have knowledge of evolutionary neuroscience and psychology.

At the end of the problem-based learning element of the course the student will:
- have developed an theory-orientated perspective for understanding cognitive and behavioral functions at multiple levels.
- be able to critically assess and integrate multiple sources from different fields and develop and synthetic framework for describing current knowledge of any neuroscience topic.
• be able to identify and articulate novel scientific questions at the frontier of systems, cognitive and behavioral neuroscience.
• have demonstrated the ability to community the above outcomes through an extensive written essay
• have demonstrated the ability to community the above outcomes through oral presentations
• have demonstrated the ability to work in a team

ASSESSMENT: In-course assessment comprised of oral presentation following group work (20%), essay (40%), and examination (40%).

Reading/Learning Resources:
The majority of the reading/learning resources will be comprised of primary research articles and secondary literature reviews published in scientific journals. These will be prescribed and suggested during individual lectures. For general reference material, the below three texts are recommended:

NSU4PH2: Neuropharmacology (Semester 1)

Credits: 5

Mode of Assessment: End of year examination

Lecturer: Dr Andrew Harkin

AIMS: To teach the principles of neuropharmacology and drug therapies for disorders of the central nervous system.

PRE-REQUISITES: Completion of General principles of Pharmacology, NS3PH1.

LEARNING OUTCOMES: On successful completion of this module the student will be able to:

1. Discuss the diagnostic criteria and symptom presentation, biological basis and drug treatment of affective and anxiety disorders, insomnia, schizophrenia, drug dependence, pain, epilepsy, Parkinson’s and Alzheimer’s disease.
2. Describe the mechanisms of action and clinical uses of local and general anaesthetic drugs
3. Identify the pharmacokinetic characteristics and adverse effects associated with antidepressant, mood stabilising, anxiolytic, hypnotic, analgesic, anaesthetic, anticonvulsant, anti-Parkinsonian and cognitive enhancing drugs
4. Discuss the neurobiological theory of CNS disorders and neurobiological adaptation to psychotropic drugs
5. Assess and evaluate recent advances in the drug treatment of CNS disorders and provide an up to date insight into CNS drug development.

LECTURES (AH)

1, 2, 3 Depression and antidepressants
4 Mood stabilizers – Lithium
5, 6 Anxiety disorders and anxiolytics
7 Hypnotics
8, 9, 10 Schizophrenia and antipsychotics
11, 12 Addiction and drug dependence – reward circuitry and drugs of abuse
13, 14 Anaesthetics (Local, General)
15, 16, 17 Epilepsy and anticonvulsants
18, 19, 20 Pain – nociception, spinal and supra spinal pain pathways
Narcotic analgesics and Other CNS acting analgesics
21, 22 Parkinson’s disease and anti-Parkinsonian drugs
23, 24 Alzheimer’s disease and drug treatment of Alzheimer’s disease
25 Brain ischemia and neuroprotection
Reading/Learning Resources:

Brody's Human Pharmacology: Molecular to Clinical (4th Ed.) by K.P. Minneman
Fundamentals of Psychopharmacology (3rd Ed.) by B. Leonard
Goodman and Gilman's The Pharmacological Basis of Therapeutics (12th Ed.) 2010
Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd Ed.)
by E.J. Nestler, S.E. Hyman, R. Malenka
The Biochemical Basis of Neuropharmacology (8th Ed.) by J.R. Cooper, F.E. Bloom, R.H. Roth

ASSESSMENT

Pass mark = 40%

Written Examination: 2 essay style questions

SUMMARY OF HOURS

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Tutorials</th>
<th>Total contact</th>
<th>Guided study</th>
<th>Total</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1</td>
<td>26</td>
<td>75</td>
<td>101</td>
<td>5</td>
</tr>
</tbody>
</table>
BIU-44445: Neurochemistry II (Semester 2)

Credits: 5

Mode of Assessment: End of semester 2 examination

(a) Neurochemistry: Brain Biochemistry & CNS Acting Drugs

(Semester 2)

Lecturer: Dr. G. Davey

This course will focus on the following topics:

Lecture 1:
- Energy substrates for the brain
- Glucose/lactate transporters
- What uses ATP in the brain?
- Astrocytes-neuron lactate shuttle hypothesis
- Glucose sensing neurons
- What controls blood flow in the brain?

Lecture 2:
- Energy thresholds in the brain
- Mitochondria control glutamate release
- Mitochondrial fusion/fission dynamics
- Complex I activity & mitochondrial fusion

Lecture 3:
- In vivo techniques for measuring neurotransmitter release and actions
- Microdialysis & HPLC
- Classical neurotransmitters
- Atypical neurotransmitters
- Nitric oxide

Lecture 4:
- GABA metabolism & GHB
- Polyamine NTs
- Glial cells and NT release (D-serine, taurine, NAAG & neuropeptides)

Lecture 5:
- Melatonin as a NT
- Aspartate & pheromones

References: to be supplied closer to lectures
(b) Neurobiology (Semester 2)
Lecturer: Dr. Jerrard Hayes

This course will focus on the following topics:

Lecture 1:
- SNARE hypothesis of exocytosis:
- experimental approaches leading to this theory pharmacology, electrophysiology
- neurotoxins which affect exocytosis.

Lecture 2:
- Cholinergic signalling:
- Voltage-gated ion channels vs. ligand-gated ion channels
- Nicotinic vs. muscarinic Acetylcholine receptors
- Prerequisites to obtain information on structure and function of receptor proteins nAChR as an example

Lecture 3:
- Inhibitory neurotransmission
- Glycinergic neurotransmission (receptors, mechanisms and pharmacology)
- GABA-ergic neurotransmission (receptors, mechanisms and pharmacology)

Lecture 4:
- Glutamatergic neurotransmission (receptors, mechanisms and pharmacology)
- Involvement of glutamatergic signalling in learning and memory formation
- Cannabinoid signalling (involvement of cannabinoid receptors in extinction and PTSD)

Lecture 5:
- Neurotransmitter transporter proteins as drug targets
- Serotonergic neurotransmission
- Neurobiology of depression
- Animal models of depression
- Molecular mechanisms of antidepressant treatment
- Non-synaptic neurotransmission and somatodendritic neurotransmitter release

References: to be supplied closer to lectures
(c) Neurodegenerative disorders: An interdisciplinary approach

(Semester 2)

Lecturer: Dr. Gavin Davey

This course will focus on the following topics:

Lectures 2-3: Parkinson’s disease-pathology, anatomy, protein aggregation, dopaminergic neuron destruction, mitochondria, ROS production, genetics, epidemiology, MPTP + neurotoxins, alpha-synuclein, prevention in animal models. Treatments – new therapies.

Lectures 3-4: Alzheimer’s disease – pathology, PET scans, neurofibrillary tangles, tau protein, tangles, beta-amyloid, presenilin, apolipoprotein E. Treatments.

References: to be supplied closer to lectures

Reading/Learning Resources:

• Proteins, Transmitters and Synapses by D.G. Nicholls (1994) Blackwell, Oxford – The best on synaptic bioenergetics (out of print but there is a copy in the library).

• The Biochemical basis of neuropharmacology by JF Cooper, FE Bloom and RH Roth Oxford University Press, Eighth Edition

BLU44455: Neuroimmunology & Neurodegeneration (Semester 2)

Credits: 5

Mode of Assessment: End of semester 2 examination

Lecturers: Dr. C. Cunningham, Dr. A. Dunne, Dr. J Murray

This course will focus on bi-directional communication between the nervous and immune systems, role of the immune system in neurodegenerative disease states, as well as neuropathological features and common mechanisms of neurodegenerative disease states.

L1-2 Introduction to the immune system & neurotransmitter and stress effects on immune system

L3-4 Brain as an immune privileged organ & multiple sclerosis/immune tolerance

L5-6. Innate inflammation in CNS with acute insults: infection/stroke/TBI: PAMPs/PRRs, Microglial downregulators; Sterile inflammation, DAMPs in the context of neurodegeneration

L7-8. Alzheimer's (disease pathology, genetic basis and development of models, status of therapeutic efforts, inflammation)

L9. Systemic inflammatory impacts on the normal brain (Sickness Behaviour) and superimposed on vulnerable states (delirium/dementia)

L10-18*. Common themes in neurodegeneration: protein aggregation, ubiquitin proteasome system, inflammation, Tau, RNA binding proteins, mitochondrial dysfunction, axonal dysfunction: Parkinson's, delirium), Huntingtons, Prion, motor neuron and

*Incorporating: Autophagy in Neurodegenerative Disease (James Murray)

On successful completion of this module students should be able to:

- Describe how hormones and neurotransmitters impact upon immune system functioning, and how psychological stress can alter immune function via hormone/neurotransmitter release
- Describe the way in which different innate and adaptive immune responses occur in the brain with respect to other organs and to discuss multiple sclerosis and EAE with respect to immune responses to CNS antigens
- Describe CNS response to bacterial endotoxin at the level of toll-like receptor activation, pro-inflammatory cytokine production, chemokine production, endothelial activation and cell infiltration
Explain microglial activation as defined by several different parameters and activities. Key features/roles of the microglial cell such as cytokine production, phagocytosis, oxidative burst and ligand receptor interactions that limit microglial activation.

Recall and integrate knowledge of the role of microglia and peripheral immune cells in acute and chronic neurodegeneration.

Discuss and criticise animal models of Alzheimer’s disease and the investigation of amyloid vaccination strategies in humans.

Describe how systemic inflammation signals to the healthy brain (detailing sickness behaviour with respect to 1) symptomology and brain areas involved in expression of same 2) routes of activation 3) the role of cytokines and prostaglandins in sickness behavior. Extend this information to the impact of similar insults on the vulnerable/degenerating brain.

Discuss common themes in neurodegeneration including protein aggregation, dysfunction of the ubiquitin proteasome pathway and autophagy and inflammation.

Describe the basic neuroanatomy of common neurodegenerative diseases including Prion diseases, Tauopathies (AD, FTD), ALS (Motor Neuron disease), Parkinsons disease and Alzheimer’s disease and draw on the ‘common themes’ above to explain mechanisms of degeneration.

Reading/Learning Resources:

Journal articles

Neurotransmitter and stress effects on immune function

Immune Privilege and Neuroimmunology of EAE and multiple sclerosis

- Galea I, Bechmann I, Perry VH. (2006) What is immune privilege (not), TRENDS in Immunology 28(1)
Trends in Immunology 36(10) 569-577

Microglial activation states, DAMPs, PAMPs etc

Alzheimer’s disease and Immunotherapy

Inflammatory mediator actions in the brain/sickness behaviour

- **Saper CB, Romanovsky AA. Scammell TE.** (2012). Neural circuitry engaged by prostaglandins during the sickness syndrome. Nature Neuroscience 15; 1088-1095

Neurodegenerative disease *(General: more specific articles cited in lectures)*

- **Jellinger KA.** (2009) Recent advances in our understanding of neurodegeneration. J Neural Transm. 2009 Sep;116(9)
GEU44500: Neurogenetics (Semester 2)

Credits: 5

Mode of Assessment: End of year examination

(a) Behavioural Genetics

Lecturer: Dr. K. Mitchell

This course will examine how genes influence behaviour through effects on cellular physiology and neuroanatomy. More specifically, it will look at how variation in genes can cause variation in behaviour. It will encompass the use of genetic approaches to dissect the cellular and biochemical components of complex behaviours in model organisms (worms, flies, mice) as well as the heredity of behavioural characteristics and psychiatric disorders in humans.

Major topics (examples of relevant psychiatric disorders are shown in parentheses):

Energy Balance, Learning and Memory, Social Behaviour, Sexual Behaviour, Cognitive Genetics, Autism, Schizophrenia

Reading/Learning Resources:
Reading material will be suggested throughout the course

(b) Genetics of Neural Development

Lecturer: Dr. J.P. Labrador

This course will examine how a developmental programme encoded in the genome directs the assembly of the nervous system, creating a remarkably stereotyped but highly plastic and responsive structure. It will address how nervous tissue is set aside in the early embryo, how it becomes patterned, how individual cell types differentiate through the expression of different combinations of genes and how these genes specify various properties that define each cell type: cell migration to the correct position, establishment of appropriate connections, electrical properties, neurotransmitter expression, etc. The course covers different aspects of nervous system development from neural induction to early steps of circuitry assembly. There is a focus on different genetic experimental methods employed to identify central mechanisms of nervous system development. We will use different models to explain processes and provide examples of networks and concepts. The emphasis will be on the conservation of signaling pathways in development of very diverse organisms. This will include Drosophila melanogaster, mouse as well as
embryological studies in frogs and chick. It will also cover a number of human genetic disorders associated with defects in these processes.

The goal of this course is to provide a concise and stimulating investigation of the field of Developmental Neurogenetics. Course lectures will explain different developmental processes of the nervous system, discuss the current issues and questions, and provide a framework for reading scientific literature. Each topic will be covered by one or more reviews and its study will be required for a successful completion of the course. Upon completion of this course students will not only understand the basic concepts but will understand the current challenges within each field of study. Students will gain an appreciation for the complexity of neural development at the cellular, molecular and genetic level. Upon completion, students should be able to approach any scientific literature related to this course.

Different subjects covered include:

Neural Induction
Neurogenesis
Neural stem cells
Temporal control of neuronal specification in Drosophila
Neuronal specification in vertebrates
Axon guidance genetics
Gradients in retinotectal mapping
Topographic mapping in the olfactory system

Reading/Learning Resources:

As a very basic introductory literature for the course any Developmental Biology book such as Developmental Biology by Scott F. Gilbert can be used. However, this literature should be used just as a starting point for this course since the material covered in the lectures needs to be studied in more specific and advanced reviews on each topic:

24
BIU-44415: Scientific Literature Skills (Semester 1)

Credits: 10

<table>
<thead>
<tr>
<th>Modes of Assessment</th>
<th>Weighting (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of year examinations</td>
<td>60 %</td>
</tr>
<tr>
<td>Seminar/Journal Clubs</td>
<td>40 %</td>
</tr>
</tbody>
</table>

Lecturers: Dr Jerrard Hayes, Prof. Mark Cunningham, Dr. C. Cunningham, Dr. T. Ryan & Literature review supervisor

(a) **Journal Club**

Students will have to comprehend, present and critically analyse research articles from high impact Neuroscience Journals. Each 2.5 hr session will be composed of 5-6 student presentations. Each student will be required to present two Journal articles, one chosen by a member of the academic staff and the second chosen by the student. The Journal articles chosen by the member of academic staff will be circulated to the class approximately 10 days in advance of the journal club. We suggest that that journal article chosen by the student could be related to the topic of their Senior Sophister research project. This course will also prepare students for an examination that is focused on the comprehension and dissection of a journal article. This exam will take place near or at the end of semester 2.

Journal Club I: Convenor’s choice of article:

Session 1: Mon 1st October, 10 am – 1 pm

Session 2: Tues 2nd October, 10 am – 1 pm

Session 3: Wed 3rd October, 2 – 5 pm

Session 4: Thu 4th October, 2 – 5 pm

Journal Club II: Student’s choice of article:

Semester 2: Dates to be fixed

Assessment

Journal Club presentation: 4 ECTS (2ECTS per presentation)

Examination paper VI: 6 ECTS
Seminar, Questions and Discussion

- Prepare a 15 min seminar on the Journal article (15 slides max) + 5 min Q&A.
- Avoid lots of writing on your slides; use drawings, flowcharts and cartoon to convey principles, hypotheses, experiments and mechanisms.
- Reading from your slides will attract low marks; practice your talk in front of your class beforehand
- The aim is to understand and explain the methodological approaches used and to critically assess the data presented with a view to understanding and critiquing (not simply accepting) the findings.

On the day of the Journal Clubs: Your participation in ALL the sessions is expected. The preparation for the exam occurs in the journal club sessions through reading and dissecting the papers featured and through listening to the feedback and the explanations and discussion that arises in those sessions. Therefore attendance is obligatory and we will be expecting you to ask questions since you should be reading the papers!
NSU44490: Research Project (Semester 1 and 2)

Credits: 20

<table>
<thead>
<tr>
<th>Modes of Assessment</th>
<th>Weighting (ECT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature review</td>
<td>5</td>
</tr>
<tr>
<td>Project Design Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Dissertation</td>
<td>10</td>
</tr>
<tr>
<td>Supervisors conduct mark</td>
<td>2</td>
</tr>
<tr>
<td>Poster presentation</td>
<td>1</td>
</tr>
</tbody>
</table>

Students will conduct a 10 week research project in one of the Neuroscience laboratories across campus, including those contributing to Trinity College Institute of Neuroscience. The research project is a major component of the Senior Sophister year comprising 33% of the final year mark. The project is assessed in a variety of ways: a comprehensive literature review, an oral presentation outlining the background to your project, the conduct and skill of the student during experimental work, a poster presentation outlining the major findings, and finally the written report (dissertation) of the project.

Stages involved in the research project

Literature Review:
Your research project will be preceded by a review of the literature pertaining to your project. The review should be concise and incisive, and must not exceed 5000 words, exclusive of references. Students are required to write the number of words on the front page of their literature review. Students may exceed the word limit only by 10% e.g. if the word limit is 5,000 words, a word count of 5,500 will be accepted. Following discussions with the external examiner in 2016, penalties will be considered for failure to adhere to these guidelines.

- It is critically important that work is correctly cited — it is plagiarism to use the work of others without proper acknowledgement. See Plagiarism (especially §54) and Instructions for Writing Reports for guidelines on citation and form of references.

- The number of references quoted must not exceed 50 (again ±10%). If at all possible, reviews should be used to refer to earlier work and most references should then be those reporting recent work and developments more closely related to your topic. One assessment criterion is how you exercise critical judgement in choosing the reference list.
• Please seek advice from your supervisor as to sources of historic reviews and pertinent current journal papers. Also seek your supervisor’s advice in writing the review. Each supervisor will expect to see a complete draft at some stage and in offering a project has also agreed to offer feedback on one complete draft.

Input from the project supervisor

The project supervisor will read **one** complete draft of the literature review prior to submission. Do not expect your supervisor to read incomplete or multiple drafts of your work. You should provide your supervisor with a draft of your literature review one week before the submission date, in order to leave plenty of time for them to read it, and for you to take on board any suggestions that they may have for improvements.

Two printed copies of the literature review should be submitted to the Course Administrator and an electronic copy e-mailed to colm.cunningham@tcd.ie by 12 noon on **Friday 15th December**.

Project Design Seminar: Each student will have a 15-minute time slot in which to give a 10-12 minute presentation of the background to the project, the question to be investigated and the material/subjects and methods to be used. Five minutes will be available for questions. These times must not be exceeded and the chair will stop you if you do and you may be penalised. Similarly, planning a talk that does not use the time available and presents a very superficial background will not attract good marks.

The presentation will enable the teaching staff to satisfy themselves that students have a reasonable understanding of the underlying theoretical basis for the investigations proposed and that the methods and design are appropriate. Staff will also judge whether the project is practicable in the time available. It is therefore important that students emphasise these points in their talks. It is not possible to summarise all the literature in the time available — students must make critical judgements. See **Instructions for Writing Reports** for some guidelines on oral presentations. It is not possible to show properly more than 10 slides. Keep them simple. Students should avoid reading if possible — a few hesitations are acceptable.

Students should consult with their supervisors when preparing presentations. They should rehearse presentations several times and preferably have at least one dress-rehearsal with the other members of the class.

Assessment Criteria: The following criteria will be used to assess presentations.

• Content
• Ability to convey key concepts
• Quality of slides
• Style of delivery
A. Ability to answer reasonable questions about the study (NB it is your responsibility to ask the supervisor questions that are relevant to the study design in order to equip yourself for presenting the project)

Dissertation: Dissertations should be written according to the style outlined in Appendix I: Instructions for Writing Reports. Dissertations are assessed by staff members who may not be expert in the precise field of study. The style of the dissertation should be designed for that readership.

Although there is significant overlap, the literature review (which will have been submitted before starting in the laboratory) is not really the same thing as an introduction and therefore that review will not simply be repurposed as the Introduction to your Dissertation. Instead, the introduction to the project thesis will be considerably shorter and focused explicitly on introducing the experiments conducted, providing essential information to place the work in context. Any recent literature which comes to your attention between October and February should of course be included. Changes in emphasis as a consequence of the realities of your research should also be made. Many journals allow introductions of less than 1000 words. For the purposes of this thesis, the introduction should be a maximum of 1500 words.

Overall, the Dissertation should be a maximum length of 40 A4 pages (excluding references). The course advisor requires three copies for assessment purposes (in addition to the electronic copy). One copy will be retained by the course advisor, one retained by the supervisor and the other returned to the author.

Notes: Following recommendations by the Neuroscience external examiner in 2016, penalties will be considered for failure to adhere to these guidelines. Likewise, excessive description of and presentation of results from experiments not actually carried out by the student will attract penalties. It is important that, in discussions with your supervisor, you are clear about what you will actually carry out (as opposed to only describing the aspirations of some larger project in which the sophister project is embedded). In simple terms, if you did not do it yourself, it should not be given prominence in your results section.

A declaration appears at the beginning of your thesis, in which you verify that the work is entirely your own. Work contributed by members of the host laboratory must be acknowledged here since inclusion of work, without acknowledgement, performed in part by others would constitute plagiarism.

Scheduling:

Methods should be written very early in the project and polished later.

Results should be in the process of being written up during the practical part of the project.

The Introduction will normally be written last and will use some material from your Literature Review, but must be more focused on introducing the work that is actually
carried out during the project and brought up to date with new, more relevant papers not available at the time of the literature review. The introduction should also still provide sufficient explanation of the methodological approach to allow any neuroscientist to understand the techniques that underpin the research.

Assessment of the dissertation: The dissertation will be double marked by two members of the academic staff.

The following will be among the criteria used (see also the Descriptors on p.30).

- Overall presentation (layout, accuracy, literacy)
- Use of literature, including grasp of different lines of evidence
- Clarity of statement of aims, results
- Clarity of explanation of methodological approaches
- Graphics (selection and value, clarity; integration into text)
- Use and interpretation of statistics (over-interpretation is a serious fault)

Input from the project supervisor: The project supervisor will read one complete draft of the project report prior to submission. Do not expect your supervisor to read incomplete or multiple drafts of your work. You should provide your supervisor with a draft of your project report one week before the submission date, in order to leave plenty of time for them to read it and for you to take on board any suggestions that they may have for improvements.

Conduct of the Student throughout Project: Supervisors are asked to allocate a mark to the conduct of the student during project work. Some indication of the criteria to be used is given below.

- Application and commitment: reliability, punctuality and responsibility in the laboratory
- Proficiency and competence in the laboratory
- Literature: creativity in finding material and comprehension of that material
- Intellectual input and initiative
- Data analysis: understanding the bases of statistical tests and using them appropriately

Senior Sophister Neuroscience project deadlines

<table>
<thead>
<tr>
<th>Event</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project design seminar</td>
<td>Week beginning October 15th</td>
</tr>
<tr>
<td>Practical work begins</td>
<td>Monday October 29th</td>
</tr>
<tr>
<td>Practical work ends</td>
<td>Friday 22(^{nd}) of February</td>
</tr>
</tbody>
</table>

Project report submitted to the Course Administrator in Hard copy (three copies in total), and via e-mail to both Course Administrator (gamccabe@tcd.ie) and Course Coordinator colm.cunningham@tcd.ie by Friday 15th March (by 2 pm).

Poster presentation of project results Friday 22\(^{nd}\) March (afternoon; provisional).
Attendance and submission deadlines for coursework

Attendance
All students are expected to attend lectures, workshops and practical classes. Scheduled classes play an important role in supporting progress through the academic year in particular course assignment work. Students are therefore expected to keep up a consistent rate of good attendance so that performance later in the year will not be adversely affected. In the event of not being able to attend classes due to illness, please inform the Course coordinator and the course administrator.

Students who miss classes are responsible for updating themselves on any information provided during those classes.

Submission deadlines
For each item of course work (Literature review and project dissertation) there will be a submission deadline. Apart from maintaining equity between students, deadlines enable them to demonstrate the ability to schedule their work properly. Students are expected to meet all deadlines. A case for special circumstances may be made to the Course Coordinator directly, or via the College Tutor. Extensions will only be given in exceptional circumstances.
Recommended textbooks and websites

Recommended General Neuroscience textbook

A good basic text

A very comprehensive reference text

Excellent comprehensive text

Useful Web Sites

Reference databases

Pubmed

Pubmed is a database of journals kept in the National Library of Medicine in the USA. It contains journals from the 1960's up to the present day. It gives abstracts for almost all articles, and it also contains links to many full text articles. This is the standard method used by researchers to search for neuroscientific research papers.

http://ncbi.nlm.nih.gov/pubmed/

Science Direct

Science direct is a web-based database of Elsevier Science journals. It contains 1200 scientific journals and access to full-text articles. You can download full text articles from 1995 onwards within TCD; however from outside the college only abstracts are available.

http://sciencedirect.com

Neuroscience Web Sites

An excellent website called “the brain from top to bottom”

http://www.thebrain.mcgill.ca
The Allen brain atlas: A large data portal on brain connectivity and gene expression
www.brain-map.org

Brain model tutorial – Useful for Neuroanatomy
http://pegasus.cc.ucf.edu/~Brainmdy/brain.html

Basic Biochemistry of neurotransmitters
http://web.indstate.edu/thcme/mwking/nerves.html

A useful tour of the brain, and a description of brain disorders
http://www.brainexplorer.org

The whole brain atlas
http://www.med.harvard.edu/AANLIB/home.html
Senior Sophister Neuroscience examinations

Under the Trinity Education Project and resulting semesterisation, the exact scheduling of examinations (and combining of modules within each exam paper) has not yet been finalised. What is certain is that you will be examined on taught material at the end of the semester in which it was delivered. Therefore, the list below (including the order and coupling of modules) is indicative only and is likely to change.

Examination papers

Semester 1

Paper 1 (16.66% of year)
Section I: Neuropharmacology (4 Questions, answer 2)
Section II: Neurophysiology II (2 Questions: either/or format)
Answer 4 Questions: Two from each section

Paper 2 (3.33 % of year)
Integrative Neuroscience (2 Questions)

Semester 2

Paper 3 (16.66% of year)
Section I: Neurochemistry II (4 Questions)
Section II: Neuroimmunology and Neurodegeneration (4 Questions)
Answer 4 Questions: Two from each from each section

Paper 4 (8.33 % of year)
Neurogenetics (2 Questions: Either or format)
Answer 2 Questions: 1 from each from each section

Paper 5 (10% of year)
Analytical paper: Comprehension of a Journal article
Answer all Questions
Viva Voce Examinations

Students may be requested to present for a *viva voce* (oral) examination by the External Examiner who has access to all examination answers and project reports, as well as a copy of this *Handbook*. This process has two functions. Firstly, to provide an opportunity to compare our course with other courses throughout the world. This ensures the quality and validity of the course. No mark is allocated to the *viva voce* examination. Candidates' marks are not reduced as the result of a *viva voce* examination, but the ranking of students within the class and the class of degree may be adjusted upwards on the basis of good performance.

Each *viva voce* examination will last approximately 20 minutes.

External Examiner (2018-)

TO BE ANNOUNCED
Structure of marks for the Moderatorship in Neuroscience

The final degree mark is comprised of a number of different components as follows.

Senior sophister marks

45%: *In-course assessments (27 ECTS)*

- Assessed elements of NSU44020 (5%)
- Journal Club (6.66%)
- Research project (33.33%)
 - Literature review: 8.33%
 - Project design seminar: 3.3%
 - Supervisors conduct mark: 3.3%
 - Poster presentation: 1.65%
 - Project report: 16.65%

55%: *Examinations (33 ECTS)*

- Paper I: 16.66%
- Paper II: 3.33%
- Paper III: 16.66%
- Paper IV: 8.33%
- Paper V: 10%

Overall degree mark

80%: Senior Sophister marks

20%: Junior Sophister Neuroscience (Group I mark)
Plagiarism
Each student is responsible for ensuring that their work is actually the result of his/her own efforts, skills and knowledge and has not been produced by means that will give an unfair advantage over other students.

In order to support students in understanding what plagiarism is and how they can avoid it, Trinity has created an online central repository to consolidate all information and resources on plagiarism in order to communicate this information to students in a clear and coherent manner. The central repository is being hosted by the Library and is located at http://tcd-ie.libguides.com/plagiarism.

It includes the following:
(i) The 2015-16 Calendar entry on plagiarism for undergraduate and postgraduate students;
(ii) The matrix explaining the different levels of plagiarism outlined in the Calendar entry and the sanctions applied;
(iii) Information on what plagiarism is and how to avoid it;
(iv) ‘Ready, Steady, Write’, an online tutorial on plagiarism which must be completed by all students;
(v) The text of a declaration which must be inserted into all cover sheets accompanying all assessed course work;
(vi) Details of software packages that can detect plagiarism, e.g. Turnitin.

When submitting assessed work, students must confirm that they have read the college regulations on plagiarism by signing declarations to that effect:

I have read and I understand the plagiarism provisions in the General Regulations of the University Calendar for the current year, found at: http://www.tcd.ie/calendar

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready, Steady, Write’, located at http://tcd-ie.libguides.com/plagiarism/ready-steady-write

You are urged to read very carefully the following extract from the College Calendar 2005/06 (pp. G13-G14) on plagiarism — the improper use of others’ work. Plagiarism is a very serious offence and is against the spirit of proper academic and scientific enquiry. The risk of inadvertent plagiarism is greater in Sophister years because of the increasing use of primary sources (research papers). It is therefore essential to develop good practice immediately.
1.32 Plagiarism

1 Plagiarism is interpreted by the University as the act of presenting the work of others as one’s own work, without acknowledgement.

Plagiarism is considered as academically fraudulent, and an offence against University discipline. The University considers plagiarism to be a major offence, and subject to the disciplinary procedures of the University.

2 Plagiarism can arise from deliberate actions and also through careless thinking and/or methodology. The offence lies not in the attitude or intention of the perpetrator, but in the action and in its consequences.

Plagiarism can arise from actions such as:

(a) copying another student’s work;
(b) enlisting another person or persons to complete an assignment on the student’s behalf.
(c) quoting directly, without acknowledgement, from books, articles or other sources, either in printed, recorded or electronic format;
(d) paraphrasing, without acknowledgement, the writings of other authors.

Examples (c) and (d) in particular can arise through careless thinking and/or methodology where students:

(i) fail to distinguish between their own ideas and those of others.
(ii) fail to take proper notes during preliminary research and therefore lose track of the sources from which the notes were drawn;
(iii) fail to distinguish between information which needs no acknowledgement because it is firmly in the public domain and information which might be widely known, but which nevertheless requires some sort of acknowledgement;
(iv) come across a distinctive methodology or idea and fail to record its source.

All the above serve only as examples and are not exhaustive.

Students should submit work done in co-operation with other students only when it is done with the full knowledge and permission of the lecturer concerned. Without this, work submitted which is the product of collusion with other students may be considered to be plagiarism.

3 It is clearly understood that all members of the academic community use and build on the work of others. It is commonly accepted also, however, that we build on the work of others in an open and explicit manner, and with due acknowledgement. Many cases of plagiarism that arise could be avoided by following some simple guidelines:
Any material used in a piece of work, of any form, that is not the original thought of the author should be fully referenced in the work and attributed to its source. The material should either be quoted directly or paraphrased. Either way, an explicit citation of the work referred to should be provided, in the text, in a footnote, or both. Not to do so is to commit plagiarism.

When taking notes from any source it is very important to record the precise words or ideas that are being used and their precise sources.

While the Internet often offers a wider range of possibilities for researching particular themes, it also requires particular attention to be paid to the distinction between one's own work and the work of others. Particular care should be taken to keep track of the source of the electronic information obtained from the Internet or other electronic sources and ensure that it is explicitly and correctly acknowledged.

It is the responsibility of the author of any work to ensure that he/she does not commit plagiarism.

Students should ensure the integrity of their work by seeking advice from their lecturers, tutor or supervisor on avoiding plagiarism. All departments should include, in their handbooks or other literature given to students, advice on the appropriate methodology for the kind of work that students will be expected to undertake.

If plagiarism as referred to in (2) above is suspected, the Course coordinator will arrange an informal meeting with the student, the student's tutor*, and the lecturer concerned, to put their suspicions to the student and give the student the opportunity to respond. If the course Coordinator forms the view that plagiarism has taken place, he/she must notify the Senior Lecturer in writing of the facts of the case and suggested remedies, who will then advise the Junior Dean. The Junior Dean will interview the student if the facts of the case are in dispute. Whether or not the facts of the case are in dispute, the Junior Dean may implement the procedures set out in Section 5 (Other general regulations).

If the course coordinator forms the view that plagiarism has taken place, he/she must decide if the offence can be dealt with under the summary procedure set out below. In order for this summary procedure to be followed, all parties noted above must be in agreement. If the facts of the case are in dispute, or if the course coordinator feels that the penalties provided for under the summary procedure below are inappropriate given the circumstances of the case, he/she will refer the case directly to the Junior Dean, who will interview the student and may implement the procedures set out in Section 5 (Other General Regulations).
8. If the offence can be dealt with under the summary procedure, the course coordinator will recommend

a) that the piece of work in question receives a reduced mark, or a mark of zero;

or

b) if satisfactory completion of the piece of work is deemed essential for the student to rise with his/her year or to proceed to the award of a degree, the student may be required to re-submit the work. However, the student may not receive more than the minimum pass mark applicable to the piece of work on satisfactory re-submission.

9. Provided that the appropriate procedure has been followed and all parties above are in agreement with the proposed penalty, the course coordinator may approve the penalty and notify the Junior Dean accordingly. The Junior Dean may nevertheless implement the procedures set out in Section 5 (Other General Regulations).

*As an alternative, students nominate a representative from the Students’ Union to accompany them to the meeting.
Class Descriptors

The following Descriptors are given as a guide to the qualities that assessors are seeking in relation to the grades usually awarded. A grade is the anticipated degree class based on consistent performance at the level indicated by an individual answer. In addition to the criteria listed examiners will also give credit for evidence of critical discussion of facts or evidence.

Guidelines on Grades for Sophisters' Essays and Examination Answers

<table>
<thead>
<tr>
<th>Class</th>
<th>Mark Range</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>90-100</td>
<td>IDEAL ANSWER; showing insight and originality and wide knowledge. Logical, accurate and concise presentation. Evidence of reading and thought beyond course content. Contains particularly apt examples. Links materials from lectures, practicals and seminars where appropriate.</td>
</tr>
<tr>
<td></td>
<td>80-89</td>
<td>OUTSTANDING ANSWER; falls short of the 'ideal' answer either on aspects of presentation or on evidence of reading and thought beyond the course. Examples, layout and details are all sound.</td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td>MAINLY OUTSTANDING ANSWER; falls short on presentation and reading or thought beyond the course, but retains insight and originality typical of first class work.</td>
</tr>
<tr>
<td>II-1</td>
<td>65-69</td>
<td>VERY COMPREHENSIVE ANSWER; good understanding of concepts supported by broad knowledge of subject. Notable for synthesis of information rather than originality. Sometimes with evidence of outside reading. Mostly accurate and logical with appropriate examples. Occasionally a lapse in detail.</td>
</tr>
<tr>
<td></td>
<td>60-64</td>
<td>LESS COMPREHENSIVE ANSWER; mostly confined to good recall of coursework. Some synthesis of information or ideas. Accurate and logical within a limited scope. Some lapses in detail tolerated.</td>
</tr>
<tr>
<td>II-2</td>
<td>55-59</td>
<td>SOUND BUT INCOMPLETE ANSWER; based on coursework alone but suffers from a significant omission, error or misunderstanding. Usually lacks synthesis of information or ideas. Mainly logical and accurate within its limited scope and with lapses in detail.</td>
</tr>
<tr>
<td></td>
<td>50-54</td>
<td>INCOMPLETE ANSWER; suffers from significant omissions, errors and misunderstandings, but still with understanding of main concepts and showing sound knowledge. Several lapses in detail.</td>
</tr>
<tr>
<td>III</td>
<td>45-49</td>
<td>WEAK ANSWER; limited understanding and knowledge of subject. Serious omissions, errors and misunderstandings, so that answer is no more than adequate.</td>
</tr>
<tr>
<td></td>
<td>40-44</td>
<td>VERY WEAK ANSWER; a poor answer, lacking substance but giving some relevant information. Information given may not be in context or well explained, but will contain passages and words which indicate a marginally adequate understanding.</td>
</tr>
<tr>
<td>Fail</td>
<td>35-39</td>
<td>MARGINAL FAIL; inadequate answer, with no substance or understanding, but with a vague knowledge relevant to the question.</td>
</tr>
<tr>
<td></td>
<td>30-34</td>
<td>CLEAR FAILURE; some attempt made to write something relevant to the question. Errors serious but not absurd. Could also be a sound answer to the misinterpretation of a question.</td>
</tr>
<tr>
<td></td>
<td>0-29</td>
<td>UTTER FAILURE; with little hint of knowledge. Errors serious and absurd. Could also be a trivial response to the misinterpretation of a question.</td>
</tr>
</tbody>
</table>
Guidelines on Marking for Project/Dissertation Assessment

<table>
<thead>
<tr>
<th>Class</th>
<th>Mark Range</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>85-100</td>
<td>Exceptional project report showing broad understanding of the project area and excellent knowledge of the relevant literature. Exemplary presentation and analysis of results, logical organisation and ability to critically evaluate and discuss results coupled with insight and originality.</td>
</tr>
<tr>
<td></td>
<td>70-84</td>
<td>A very good project report showing evidence of wide reading, with clear presentation and thorough analysis or results and an ability to critically evaluate and discuss research findings. Clear indication of some insight and originality. A very competent and well presented report overall but falling short of excellence in each and every aspect.</td>
</tr>
<tr>
<td>II-1</td>
<td>60-69</td>
<td>A good project report which shows a reasonably good understanding of the problem and some knowledge of the relevant literature. Mostly sound presentation and analysis of results but with occasional lapses. Some relevant interpretation and critical evaluation of results, though somewhat limited in scope. General standard of presentation and organisation adequate to good.</td>
</tr>
<tr>
<td>II-2</td>
<td>50-59</td>
<td>A moderately good project report which shows some understanding of the problem but limited knowledge and appreciation of the relevant literature. Presentation, analysis and interpretation of the results at a basic level and showing little or no originality or critical evaluation. Insufficient attention to organisation and presentation of the report.</td>
</tr>
<tr>
<td>III</td>
<td>40-49</td>
<td>A weak project report showing only limited understanding of the problem and superficial knowledge of the relevant literature. Results presented in a confused or inappropriate manner and incomplete or erroneous analysis. Discussion and interpretation of result severely limited, including some basic misapprehensions, and lacking any originality or critical evaluation. General standard of presentation poor.</td>
</tr>
<tr>
<td>Fail</td>
<td>20-39</td>
<td>An unsatisfactory project containing substantial errors and omissions. Very limited understanding, or in some cases misunderstanding of the problem and very restricted and superficial appreciation of the relevant literature. Very poor, confused and, in some cases, incomplete presentation of the results and limited analysis of the results including some serious errors. Severely limited discussion and interpretation of the results revealing little or no ability to relate experimental results to the existing literature. Very poor overall standard of presentation.</td>
</tr>
<tr>
<td>Fail</td>
<td>0-19</td>
<td>A very poor project report containing every conceivable error and fault. Showing virtually no understanding or appreciation of the problem and of the literature pertaining to it. Chaotic presentation of results, and in some cases incompletely presented and virtually non-existent or inappropriate or plainly wrong analysis. Discussion and interpretation seriously confused or wholly erroneous revealing basic misapprehensions.</td>
</tr>
</tbody>
</table>
General Statement of Course

This statement is designed to be helpful to employers and others by giving an idea of the skills acquired and tested during the Moderatorship programme in Neuroscience. It also gives an outline of the range of skills that students can demonstrate by the end of their degree and may be useful in compiling CVs.

The Neuroscience degree class is comprised of 20 Science students in their third and fourth years in College. They are treated as one group for the two years (although they share a number of courses with other groups). The course fosters students’ responsibility for their own learning; good interpersonal skills; teamwork and supporting others; giving and taking appropriate criticism.

Extraction of information from primary written sources

(This skill is repeatedly used and repeatedly tested throughout the two years.)

- charts and graphs
- following an argument
- summarising key elements orally and in writing
- criticising evidence, methods, arguments, presentation (including statistics)

Presentation skills

A high standard of presentation is required with strict adherence to deadlines. PowerPoint presentation software is used for all oral presentations.

- reports of laboratory work
- literature reviews
- reports to a specified format using word-processing, spreadsheets and data analysis applications.

Information Skills

Searching for primary and other sources of information using Internet and other electronic resources as well as other means.
Project work

Group projects foster team work skills (in which specific instruction is given).

Individual projects develop initiative, persistence, responsibility and coping skills; further develop skills in the following areas:

- reviewing
- analysis
- numeracy
- literacy
Appendix I: Instructions for Writing Reports

This is a rather long section with a lot of detail in it. This is because the department (and employers) regard the acquisition of communication skills as very valuable. I hope that these notes will help you to develop those skills and that you will take pride and pleasure in that development. You will find that you will not absorb all this information at a single reading. You should refer to these notes whenever you are doing a significant piece of writing and especially when you are writing your Project Report.

These instructions have been prepared to indicate to both staff and students the expected standard of report writing and they apply to all reports and the Senior Sophister Project. It is probably not an exaggeration to say that up to 20% of marks are lost by poor presentation of work. These notes are designed to help students to avoid the commoner faults and to improve the presentation of work. While directed towards the writing-up of a major project report, almost all the advice can be applied to short reports and essays which form the bulk of the in-course assessments during the Sophister years.

Preparing a Synopsis
It is essential to prepare a detailed synopsis of any piece of written work which is likely to be more than one page long. A synopsis helps the writer to see clearly what the main points are and to arrange the material so as to bring the important points out. For a Project Report, the synopsis would show the order in which the material is to be presented, some idea of the length of each section, what is to be included in each section and an indication of the location of Figures, Tables and Plates.

There are two main objectives in preparing a synopsis:

a) To help the writer to plan the work to the maximum effect.

b) To produce a written document which can be discussed with the supervisor before a great deal of writing is done. This is essential for large reports and is strongly recommended as a general practice.

A carefully produced synopsis can save hours of writing time and will allow alterations and additions. Work which is not well-planned is likely to ramble and the main points will be lost.

Reports should be divided into the following standard sections:
Very occasionally the nature of the material may require a different format. **Students should consult supervisors before deviating from the standard arrangement.**

Now follows a short discussion of the headings listed above.

Title
This should be informative without being too long. Abbreviations should be avoided.

Abstract
The abstract (not to exceed 250 words) should be clearly written and readily comprehensible to a broad readership. The abstract should provide a concise summary of the objectives, methodology, key results and major conclusions of the study. It should be written in complete sentences, without explicit subheadings.

Acknowledgements
The Acknowledgements should be placed at the end of the text (before the references) except in the Project Report, when they should immediately follow the Title and Summary.

As a matter of courtesy the *all* staff mentioned should be given a title (Prof., Dr, Mr, Ms) and both forename and surname. Only intimates should be referred to by first name only.

Work contributed by others to your project must be acknowledged. Such a situation would arise if, for example, stored samples generated by another researcher were used in the project or if the nature of specific experiments to be included in the project dictated that they must be carried out by an experienced researcher. The titles and names of such contributors and the precise nature of their contribution must be included in this section in a clear statement of acknowledgement. **An omission of such an acknowledgement where required is plagiarism, which as**
outlined elsewhere in this Handbook (page 39-42) is regarded by College as a serious offence, and the student concerned will be penalised.

All the foregoing are ‘preliminaries’ and should not be numbered with the main body of the text. Instead, give preliminaries Roman numerals (i, ii etc.). The pages of the main text should be numbered using Arabic numerals (1, 2, etc).

Introduction

On the whole short introductions are preferred. A long summary of the literature is not necessary and is better placed in the relevant sections of the Discussion. A clear statement of the problem and the immediate background as well as the aims of the project and its relevance should be given.

Methods

A clear account of all the animals, materials, methods (including statistical analyses) and experimental designs used must be given so that others can repeat the experiments. (The anonymity of human subjects must be preserved, by using code numbers or letters.) In particular, it should always be clear to the reader exactly what is being measured, and how many measurements (or animals or subjects) there are in each value. Failure to do this will result in loss of marks. It may be useful to clarify here the contribution of others to the practical work (see **Acknowledgements**).

Results

This is usually the most badly-presented section of reports and yet it is the most important. The reader must be led carefully through the results step by step. The main observations must be brought out; it is **NOT** sufficient to present figures or tables and then leave the reader to work out the meaning (see later sections: **Figures** and **Tables**).

Second-order variables. If you are using some transformation (e.g. percentages) of the raw data, you should explain why you are doing so and, if possible, what, if any, difference the transform makes. When results are presented as % control, the absolute value of the control should be given in the Figure/Table legend.

Presentation of Statistics. This requires particular attention and is a skill that must be acquired. Always state clearly what measure (mean, etc.) and what measure of variation (SD, SEM, etc.) is being used. The number of observations (n) must be clearly stated and specifically given if SEM’s are used. Do not give excessive numbers of decimal places; measures of variation should have one more significant figure than the mean. It is important to clearly state the **direction** and **magnitude** of the change observed. Do this first, and then give the result of any statistical tests used to determine significance.
Example: Pre-treatment with dexamethasone induced a significant decrease (80%) in TNF-α production from glial cells (P < 0.01).

Significance Testing. Express significant differences by probability values or conventional symbols:

* = P < 0.05, ** = P < 0.01, *** = P < 0.001.

Over-interpretation of results is a serious error. You must demonstrate that you understand the significance of statistical testing. If a difference (or other statistical result, e.g. correlation) is not statistically significant, you should not treat it as if it is. If you want to discuss a non-significant ‘trend’ in your results, make it clear that you know the difference. (You should also have a sound biological reason for doing so.)

Discussion

This section often presents the most problems. In particular, it is often difficult to decide what should go in the Discussion and what should go in the Results (see Preparation of a Synopsis, below). A good guideline is ‘When in doubt, put it in the Discussion’, and leave the presentation of results as uncluttered as possible.

The Discussion will typically include the following.

a) A brief summary of the main results (single paragraph)
b) Interpretation of the significance of your results.
c) A comparison of the results (not forgetting the control values) with those in the literature.
d) A discussion of the relevant literature.
e) A critical discussion of possible sources of error in the results. Critical means not only listing the sources of error but also saying how important they are likely to be.

This list is by no means exhaustive and the categories will often overlap, but it should be helpful at the planning stage.

References

Note that all references cited in the text must appear in the list of references — and only those references. General reading such as textbooks should not be cited, unless you are using a figure or referring to a very specific point.

In the text...

- When you make a scientific statement of fact, you must reference an original article with data to support this fact (Smith et al., 1999).
- If there is only one author, quote the name only followed by the year the paper was published (Jones, 2000).
- If there are two authors, use both names followed by the year the paper was published (Murphy & Quinn, 2001).
• If there are more than two authors, use et al. (always in italics with a full stop afterwards), which is the Latin term for ‘and others’ (Smith et al., 1999).
• If you want to reinforce the point and use several articles, they should be listed from the earliest to latest, and separated by a semicolon (Smith et al., 1999; Jones, 2000; Murphy & Quinn, 2001).
• If you are quoting two articles by the same person in the same year, denote one as ‘a’ and one as ‘b’. This is done alphabetically according to the second author on the paper (Smith et al., 1999a; Smith et al., 1999b).
• When including the reference in the text, follow the following formats. ‘Smith et al. (1999) have shown that...’, ‘It was shown by Smith et al. (1999) that...’.

Style of References

These days most journals use an abbreviated format for Journal titles.

When abbreviating Journal titles make sure to use the correct abbreviation. You can find the correct abbreviation of any journal on PUBMED (http://www.ncbi.nlm.nih.gov/entrez/)

Some examples are as follows:

Journals with a single word in the title are not abbreviated (eg) Neuropharmacology = “Neuropharmacology”

Journal of Neuroscience = “J Neurosci”

Behavioural Brain Research = “Behav Brain Res”

There are different styles for journal articles, books, and book chapters as illustrated below.

Journal article

Cited in text as: (Wang et al., 2004)

Cited in reference list as:

Book

Cited in text as: (Hille, 1974).

Cited in reference list as:

Chapter in a book
Cited in text as: (Stent, 1981)

Cited in reference list as:

The most important thing to remember when citing references is to be consistent.

Appendix
This should contain essential raw data and details of any other methods (e.g. staining techniques *or other routine procedures*). Note that all entries in the Appendix must be properly described in suitable legends. It is not inappropriate to repeat relevant statistical summaries in the Appendix. All Tables in the Appendix must have fully descriptive titles so that they can be understood without reference to the main text.

Figures and Tables
These are a great deal of trouble to prepare and it is a pity to waste them for the sake of a little attention to detail. All Figures and Tables must be numbered and have a descriptive legend, so that each can be understood without reference to the text. Legends precede Tables and follow Figures. It may be desirable to include the important observation or conclusion in the legend, especially in histological figures. All units of measurement and statistical parameters must be identified. Axes on graphs and columns in tables must be labelled so that it is clear what each point or value represents. Try to keep graphs uncluttered — three lines are plenty. Use the conventional symbols of open and filled squares, triangles or circles. Shading will aid clarity in histograms. Tables should be as simple as possible. Try not to put all your results in one huge Table because the effect is too daunting for the reader.

The commonest fault is the failure to integrate Figures and Tables with the text. It is no use saying: ‘The results of this experiment are summarised in Table 3.’ and then proceeding to the next item. The reader must be guided and the main points clearly brought out — even at the cost of some repetition of material between legend and text. If Figures or Tables are large it may not be possible to include the legend on the same page. In such cases, put the legend on the facing page. If Figures, Tables or Plates (mounted groups of photographs) are brought together, rather than being interspersed with the text, say so and tell the reader where they are. Note that if it is necessary to put a figure or table sideways in the text, it should be arranged so that is viewed from the right.

If you have copied a figure from somewhere else, or modified it only a little, the original figure must be acknowledged (with reference in the legend and in the list) (see Plagiarism).

Grades of Heading
Careful attention should be given to this point at the planning stage. Examples of the usual grades of heading are given below with a short description of each in brackets). Use bold or italic type as shown.
Heading

RESULTS

[capitals in bold print, centred, no underline or stop]

Subheading Effect of NMDA receptor blockade on neuronal viability

[Upper and lower case in bold print, centred, no stop]

Further subheading

LDH release

[Upper and lower case in bold italic print, centred, no stop]

Word Processing: There are some conventions that should be followed. Paragraphs should be created by leaving a blank line and not by indenting. Do not put spaces before a punctuation mark because it might then be carried over to the beginning of a new line.

All punctuation marks should have only a single space after them, never before. In the days of typewriters, colons and full points were conventionally followed by two spaces. It is not necessary or desirable to do so in a word-processor because the application will stretch that space preferentially, especially in fully-justified text (i.e. text with straight left and right margins as in this section).

Word-processors allow you to cut and paste graphs and figures into the text rather than putting them on separate pages with legends on the facing page. This should be done wherever possible.

Use the spelling checker, but ensure that it is set to ‘English (UK)’ and not ‘English (US)’ by using the ‘Language’ option on the Tools menu. Remember that you will still need to proof-read the final draft; the spelling checker will not find all errors. Pay special attention to names and technical terms.

Spelling.

‘UK English’ rather than ‘US English’ forms should be used: e.g. fibre not fiber.

Student’s t test should have a capital and apostrophe; the t should be italicised.

“‘It’s’ should never be written in formal prose; always use ‘it is’. The possessive is “its”.

Numbers less than eleven should be spelled in full unless they refer to specific units, e.g. ‘6 days’, but ‘six subjects.’

Note that ‘s’, ‘h’, ‘min’ [no stop] and ‘d’ are the abbreviations for seconds, hours, minutes and days, respectively. The multiplier ’k’ as in km (kilometre) is always lower case. The abbreviations for units never take an ‘s-plural’.
Headers and Footers are provided in word processors: a Header can be used to insert space and/or a running title at the top of each page; a Footer does the same at the bottom of the pages.

Pagination should be checked as the last stage in preparing a manuscript. It is usual to adjust the text so that odd lines or parts of lines do not appear at the beginning or end of a page. The adjustment may be done by inserting blank lines in appropriate places or by using the Insert Page Break command. Word has a ‘Control widows and orphans’ option (see Format menu, Paragraph, Line & Page breaks tab). Remember to set the page style (Page Setup) and printer type (via Chooser) before doing this and work from the beginning of the text.

Font. Choose your font with care. Some fonts take up a lot of space and others may not be suitable for laser-printing. For this reason you should avoid fonts named after cities. Garmond (used in these notes) has been found to be a satisfactory, clear and reasonably compact font. Resist the temptation to use very ornate fonts (e.g. London or Zapf Chancery) for body-text. Resist also the more complex styles such as Outline. Underlining does not look very attractive in laser-printing and you may prefer to use italics for emphasis.

Fonts are designed for different purposes and a font that is easy to read on a screen (e.g. Geneva) is not necessarily suitable for body-text. Times is designed for narrow columns and does not look well in A4 pages and should not be used. Times New Roman shares many of the characteristics of Times (compact, with a lot of white space) but looks better.

Spacing. With conventional typewriters, it was conventional and desirable to double-space the text to aid clarity. If a type-size larger than 10 pt is used, it is unnecessary to double-space. If you use 12 pt body text, 1.5 spacing may be adequate. Try it and check with your supervisor if in doubt. (This text is 10 pt and single-spaced.)

Special Fonts. Greek characters are available in the font Symbol.

Preparing Material for PowerPoint presentations: Students are required to make oral presentations from time to time — another important skill. The usual means of presenting visual information is via Microsoft PowerPoint.

- Legibility. Anything less than 18 pt body text will be difficult to read. Headings should be about 24 pt. Using a ‘sans-serif’ font (e.g. Helvetica) will often improve legibility. Times is not suitable for projection. Bolding the text is helpful too. Diagrams will usually need to be enlarged before incorporating into slides. It is useless to merely copy pages from papers or books onto slides — the print size will be neither big enough nor dense enough.
- Density. Five lines is the useful maximum; and bullet points are better than continuous prose. If you are tempted to put more on, think again. Are you trying to write your speaking notes onto the acetate? It is not good technique to simply read out what is on the screen.
Do you want to learn about cutting-edge neuroscience research and still have a brilliant social life?!!

JOIN NEUROSOC !!!

Our weekly seminar series provides the student body with a chance to learn about the exciting cutting-edge neuroscience research carried out by academics from within Trinity as well as other Irish and foreign universities. It provides a truly unique opportunity for our members to chat to leaders in the field of neuroscience in an informal setting and gain valuable insights and ideas for future career paths.

As well as the exciting SCIENCE aspect to our society... We also host a number of SOCIAL EVENTS throughout the year. Past events have included movie screenings, BBQ's, 12 bars of Christmas, table quizzes, lots of wine receptions and not forgetting the glitz and glamour of our annual Neurosoc Ball.

These social events are guaranteed nights to be remembered, as well as giving the new students a chance to make strong friendships with the current post-graduate and undergraduate members of the society.

For more information or any suggestions contact us at: neuroscience@csc.tcd.ie

We’ll be looking forward to seeing you soon, The neurosoc team.
MyCareer from Careers Advisory Service

An online service that you can use to:

- Apply for opportunities which match your preferences - vacancies including research options
- Search opportunities - postgraduate courses and funding
- View and book onto employer and CAS events
- Submit your career queries to the CAS team
- Book an appointment with your Careers Consultant

Simply login to MyCareer using your Trinity username and password and personalise your profile.

Careers Advisory Service

Trinity College Dublin, 7-9 South Leinster Street, Dublin 2

01 896 1705/1721 | Submit a career query through MyCareer

Opening Hours

During term: 9.30am - 5.00pm, Monday - Friday

Out of Term: 9.30am - 12.30pm & 2.15 - 5.00pm, Monday - Friday
Login. Only two steps - it's easy! Find us on tcd.ie/careers or MyDayApp

STEP 1 Login to MyCareer (using your Trinity username and password)

STEP 2 Update your profile with your email preferences, job and study areas of interest and your career readiness

Careers Advisory Service
Contacts:

Course Administrator:
Gabrielle McCabe
Room 3.07, Biochemistry School Office, TBSI, Pearse St.
Phone: +353-1-8964195
E-mail: gamccabe@tcd.ie

Senior Sophister year Coordinator:
Colm Cunningham
Trinity College Biomedical Sciences Institute (TBSI), Rm 6.05
(01) 896 3964
Email: colm.cunningham@tcd.ie

Neuroscience Degree coordinator:
Gavin Davey,
Trinity Biomedical Sciences Institute, Rm 5.06
(01) 896 8408
Email: gdavey@tcd.ie